
Implementing a Scheme-Like Interpreter in Perl

Bill Hails

April 15, 2006

Contents

1 Introduction 4

2 Why Scheme? 6

3 An Introduction to PScheme 7
3.1 PScheme Syntax . 7
3.2 Simple Expressions . 7
3.3 Conditionals . 9
3.4 Global Variables . 10
3.5 Functions . 11
3.6 Local Variables . 12

4 Interpreter Version 0.0.0 14
4.1 The Read-Eval-Print Loop . 14
4.2 The Environment . 16
4.3 The Reader . 18
4.4 PScheme Expressions . 23
4.5 Evaluation . 26
4.6 Primitive Operations . 28
4.7 Special Forms . 31
4.8 Output . 33
4.9 Summary . 35
4.10 Tests . 38

5 Interpreter Version 0.0.1—Implementing ��� 41
5.1 The Environment . 41
5.2 Global Environments have a Problem 43
5.3 Environment Passing . 44
5.4 let Itself . 47
5.5 Summary . 48
5.6 Tests . 48

6 Interpreter Version 0.0.2—Implementing ������ 51
6.1 lambda . 53
6.2 Closure . 57
6.3 Summary . 60
6.4 Tests . 60

1

7 Interpreter Version 0.0.3—Recursion and ������ 64
7.1 letrec . 65
7.2 Assignment . 66
7.3 Summary . 69
7.4 Tests . 69

8 Interpreter Version 0.0.4—Another Variation on ��� 72
8.1 Sequential Binding . 72
8.2 let* . 72
8.3 Summary . 74
8.4 Tests . 75

9 Interpreter Version 0.0.5—List Processing 79
9.1 quote . 79
9.2 list . 79
9.3 car and cdr . 80
9.4 cons . 81
9.5 Summary . 85
9.6 Tests . 85

10 Interpreter Version 0.0.6—Macros 89
10.1 macro . 90
10.2 Evaluating Macros . 90
10.3 Summary . 93

11 Interpreter Version 0.0.7—Side Effects 95
11.1 The Beauty of Functional Languages 95
11.2 Variable Assignment . 96
11.3 Sequences . 97
11.4 Summary . 98

12 Interpreter Version 0.0.8—��	
�� 100
12.1 Environment Changes . 100
12.2 The define Special Form . 100
12.3 Persistant Environments . 101

13 Interpreter Version 0.0.9—Classes and Objects 103
13.1 Features of this implementation 103

14 Interpreter Version 0.0.10—Continuations 104

15 Summary 105

List of Figures

1 Example PScheme Expression Structure for (foo ("bar" 10)) . 19
2 PScm::Expr classes . 24
3 PScm::Expr new() and value() methods 25
4 PScm::Expr Eval() Methods . 27
5 PScm::Expr as string() methods 34

2

6 PScm::Expr methods . 35
7 Stacks Destroy Old Environment Frames 42
8 Linked Lists Don’t Destroy Old Environment Frames 42
9 Environment during evaluation of example “let” 44
10 Functions extend an environment 51
11 Closures extend the lexical environment 52
12 let binds n to 2 . 54
13 Closure Captures the Local Environment 56
14 let binds times2 . 57
15 Closure Extends Captured Env 59
16 Why recursion doesn’t work . 64
17 Recursive environments . 65
18 Nested environments . 73
19 Cons Cell Representation of a nested list 82

3

1 Introduction

By the end of this chapter you should have a thorough understanding of the inner
workings of a programming language interpreter. The source code is presented
in full, and several iterations add more features until it could be considered
pretty complete. That is quite a tall order for so short a piece as this, but the
interpreter is written to be as easy to understand as possible: It has no clever
optimizations that might obscure the basic ideas, and the code and the ideas will
be explained without any technical jargon. It is however assumed that you has
a good working knowledge of Perl (Perl5), including its object-oriented features.

The final implementation will demonstrate:

• primitive arithmetic operations;

• conditional evaluation;

• local variables;

• functions and closure;

• recursion;

• list processing;

• quote—preventing evaluation;

• a simple macro facility;

• variable assignment and side-effects;

• procedures (as opposed to functions) and sequences;

• objects and classes;

• continuations.

Having said that, time and space is not wasted fleshing the interpreter out
with numerous cut’n’paste system interfaces, i/o or even much basic arithmetic
(the final implementation has only multiplication and subtraction—enough for
the tests and examples to work,) but by then it should be a trivial matter for
anyone to add those themselves if they feel so inclined. Another point worth
mentioning up front is that no claims are made that this is in any way an efficient
implementation. It is just meant to be easy to understand.

My motivation for writing this is that I have always been fascinated by the
idea that programming languages are just programs, but I found it very difficult
in the past to work out what was actually going on in the handful of public
domain implementations of programming languages that were available at the
time. The temptation always seemed to be there for the authors to add all sorts
of bells and whistles to their pet project, to the point that the core ideas became
obscured and obfuscated. In fact it was only when I found out that the easiest
implementations of Scheme to understand were written in Scheme itself that I
made any real progress with that particular language. However implementing an
interpreter in terms of itself (so-called “meta-circular evaluation”) easily leads
to confusion, and it struck me that Perl, with its very high-level constructs and

4

high signal to noise ratio is the perfect vehicle to demonstrate the programming
language concepts that I’ve so painfully gleaned through time, without any
incestuous meta-circular issues to deal with.

5

2 Why Scheme?

Scheme is one of the younger members of the Lisp family of programming lan-
guages. LISP stands for “LISt Processing”1, and this is an appropriate name
since the fundamental data type in these languages is the list.

The main reason for choosing Scheme to demonstrate the internals of an
interpreter is that Scheme is a very simple language, and at the same time
an astonishingly powerful one. An analogy might be that if C is the “chess” of
programming languages, then Scheme is more like “go”. The official standard for
Scheme, the “Revised(5) Report on the Algorithmic Language Scheme” or R5RS
(http://www-swiss.ai.mit.edu/~jaffer/r5rs toc.html) as it is known, has
this to say:

Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary.

Whether or not one agrees with that, and it’s hard to argue, it strongly suggests
that such a language might be pretty straightforward to implement.

Another interesting feature of Scheme and the Lisp family of languages is
that the list data that they work with is also used to construct the internal
representation of the programs themselves. Therefore Scheme programs can
manipulate their own syntax trees. This makes the definition of macros (syn-
tactic extensions) particularly easy from within the language itself, without
recourse to any separate preprocessing stage. Finally, another good reason for
choosing Scheme is that it is extremely easy to parse, as we shall see.

1Or “Lots of Irritating Single Parentheses”.

6

3 An Introduction to PScheme

In subsequent discussions, “PScheme” means this particular implementation of
a Scheme-like interpreter (Perl-Scheme). The implementation lacks a number of
the features of a complete implementation, and differs from the Scheme standard
at a number of points. However it could be argued that it is close enough to
call itself “Scheme-like”, it’s certainly closer to a reference implementation of
Scheme than it is to any other language in the Lisp family.

3.1 PScheme Syntax

PScheme has a very simple syntax. A PScheme expression is either a number,
a string, a symbol, or a list of expressions separated by spaces and enclosed in
round brackets (where an expression is either a number, a string, a symbol, or a
list of...). We can write this recursive definition in a special purpose notation for
describing programming language grammars called Backus-Naur Format (BNF)
as follows:

〈expression〉 ::= 〈number〉
| 〈string〉
| 〈symbol〉
| ’(’ 〈expression〉 ... ’)’

Read “::=” as “is a”, and “|” as “or”.
A PScheme number is a sequence of digits, optionally preceded by a “+” or

a “-”. PScheme does not support floating point or other more complex number
types.2

A PScheme string is any sequence of characters enclosed by double quotes.
Within a string, a double quote may be escaped with a backslash.

PScheme has a rather more relaxed idea of what constitutes a symbol than
most languages, essentially it’s anything that isn’t an open or close brace and
doesn’t look like a number or a string, up to the next whitespace character. So
“x”, “type”, “a2-2”, “this-is-a-symbol”, “<”, “*”, “+”, “&foo”, “=+=” and
“$%*!!” are all symbols.

PScheme reads an expression, then evaluates it, then prints the result. The
rules for evaluation are also very simple:

• The result of evaluating a number or a string is just that number or string;

• The result of evaluating a symbol is the value that that symbol currently
has, or an error if the symbol has no value;

• The result of evaluating a list of expressions is the result of evaluating each
expression in turn, then applying the first evaluated expression (which
should be a function) to the other evaluated expressions.

3.2 Simple Expressions

So lets take a look at PScheme in action. Firstly Scheme is typically an inter-
active language, it presents a prompt, and the user types in expressions. The
interpreter evaluates those expressions then prints the results:

2A full Scheme implementation supports a large range of numeric types, from arbitrarily
large integers through floating point, precision-preserving fractions, and complex numbers.

7

> 2
2

Here we gave the interpreter a 2, and it replied with 2, because 2 is 2 is 2 (the
“>” is the PScheme prompt). Let’s try something a bit more adventurous:

> x
����� � �
��
�� 	� �
� ���������

We asked for the value of a symbol, x, and because the interpreter doesn’t know
what x is, we get an error. Let’s try something that does work:

> (* 2 2)
4

Now that might look strange at first, but remember the first expression in the
list should evaluate to a function. The multiplication symbol “*” evaluates
to the internal primitive definition of how to multiply. We told PScheme to
multiply 2 by 2, and it replied 4. All it has done is to:

1. evaluate the symbol * to get its value: the multiplication function.

2. evaluate the first 2 to get 2;

3. evaluate the second 2 to get 2;

4. applied the multiplication function to arguments 2 and 2.

Another important thing to note here is that PScheme makes no distinction
between functions and operators, the operation always comes first. This has
some advantages. Because the operation always comes first, it can often apply
to variable numbers of arguments:

> (* 2 2 2 2)
16

A more syntax-rich language would require something like 2 * 2 * 2 * 2 to
get the same result.

Now for something just a little more complex:

> (* (- 8 3) 2)
10

Here we told the interpreter to subtract 3 from 8, then multiply the result by
2. It did it by:

1. Evaluating the symbol * to get the multiplication function;

2. Evaluating the expression (- 8 3) to get 5, which it did by:

(a) Evaluating the symbol “-” to get the subtraction function;

(b) Evaluating 8 to get 8;

(c) Evaluating 3 to get 3;

8

(d) Applying the subtraction function to arguments 8 and 3.

3. Evaluating 2 to get 2;

4. Applying the multiplication function to arguments 5 and 2 to get 10.

Hopefully it is obvious that the interpreter is following a very simple set of rules
here, albeit recursively.

This incidentally demonstrates another big simplification that PScheme makes:
it is impossible for there to be any ambiguity about operator precedence, be-
cause the language forces the precedence to be explicit. In fact there is no notion
of operator precedence in PScheme.

Again in a more syntax-rich language, to achieve the above result one would
have to write (8 - 3) * 2 because the equally legal 8 - 3 * 2 would be mis-
interpreted (a lovely expression) as 8 - (3 * 2).

3.3 Conditionals

The keyword if introduces a conditional statement. The general form of an if
expression is:

(if 〈test〉
〈true-result〉
〈false-result〉)

This is simple enough, if expects (in this implementation at least) three argu-
ments: a test, a true result and a false result. For example:

> (if 0
> 3
> (- 8 3))
5

In this example since the test, 0, is false (again, in this implementation) the
false result (8 − 3 = 5) is returned.

Even here we can start to see some of the power of the language:

> ((if 0 - *) 4 5)
20

In the author’s opinion this is a beautiful example of “removing the weaknesses
and restrictions that make additional features appear necessary”: because the
language treats the operator position just like any other expression, any ex-
pression that evaluates to an operation is valid in that position. Furthermore
because primitive operations are represented by symbols just like anything else,
they can be treated just like any other variable: the if with a false (0) test
argument selects the value of “*” to return, rather than the value of “-”. So
it’s the multiplication function that gets applied to the arguments 4 and 5.

However there is a slight complication, Consider this:

> (if 0
> (a-long-calculation)
> (- 8 3))
5

9

Were if a normal function, the normal rules for evaluation would apply: evalu-
ate all the components of the list, then apply the if function to the evaluated
arguments. That would mean (a-long-calculation) and (- 8 3) would both
get evaluated, then if would pick the result. Although the value of the whole
if expression is unaffected, provided (a-long-calculation) doesn’t have any
side-effects, we still don’t want to have that calculation executed unnecessarily.
Now remember it was said that PScheme evaluates each component of the list in
a list expression? Well that’s not entirely the case. It always evaluates the first
component of the list, and if the result is a simple function like multiplication,
then it goes on to evaluate the other items on the list and passes the results to
the function just as has already been described. However if the first component
is what is called a special form, such as the definition of if, then PScheme
passes the un-evaluated arguments to the special form, and that special form
can do what it likes with them.

In the case of if, if evaluates its first argument (the test) and if it is
true it evaluates and returns its second argument (the true result), otherwise it
evaluates and returns its third argument (the false result). We can demonstrate
that with a simple example:

> (if 1
> 10
> x)
10

Because the test result was true, the if only evaluated the true branch of the
expression, there was no error from the undefined symbol x on the false branch.

3.4 Global Variables

define is the way we associate values with global variables in PScheme. It has
the general form:

(define 〈symbol〉 〈expression〉)
For example:

> (define x 5)
x
> x
5

In the above example we gave x the value 5, then when we asked for the value
of x, it replied 5. Note again that the operation (define in this case) always
comes first. Note also that define must be a special form, because we didn’t get
an error attempting to evaluate x during the definition. define does however
evaluate its second argument, so for example:

> (define a b)
����� � �
��
�� 	� �
� ���������

causes an immediate error attempting to evaluate the undefined symbol b before
assigning the result to a.

10

3.5 Functions

lambda, another special form, creates a function. The general layout of a lambda
expression is:

(lambda (〈symbol〉 ...) 〈expression〉)
The (〈symbol〉 ...) part is a list of the names of the arguments to the function,
and the 〈expression〉 is the body of the function. For example:

> (define square
> (lambda (x) (* x x)))
square

Now that may also look a bit strange at first, but simply put, lambda creates
an anonymous function, and that is separate from giving that function a name
with define.

The function being defined in this example takes one argument x and its
function body is (* x x). The function body will execute when the function is
invoked. This is pretty much identical to this Perl snippet:

our $square = sub {
my ($x) = @_;
$x * $x;

};
In fact, Perl’s anonymous sub {...} syntax can be considered pretty much syn-
onymous with PScheme’s (lambda ...). The big difference is that in PScheme
that’s the only way to create a function3.

Having created a square function, it can be called:

> (square 4)
16

Although square was created by assignment, when it is used it is syntactically
indistinguishable from any built-in function.

Anonymous functions can be called directly without giving them a name
first:

> ((lambda (x) (* x 2)) 3)
6

Again this is much simpler than it might first appear. The first term of the list
expression, the lambda expression, gets evaluated resulting in a function. That
function then gets applied to its argument 3 resulting in 6. It is possible to do
something similar in perl, like this:

3There are examples of Scheme code that show things like:

(define (square x) (* x x))

This form of define, where the expression being defined is a list, is just syntactic sugar for
the underlying form. define essentially re-writes it into the simpler lambda statement before
evaluating it. The second form of define is certainly a little bit easier to read, but personally
I find that since I have to use lambda in some expressions anyway, it makes sense to always
use it. Plus the syntactic sugar tends to obscure what is really going on. In any case PScheme
does not support this alternative form of function definition.

11

sub { shift * 2 }->(3);

but it’s not a common idiom.

3.6 Local Variables

Moving on, how can PScheme create local variables limited (lexically) to a
given scope? This is done with the let special form. The general form of a let
expression is:

(let (〈binding〉 ...) 〈expression〉)

where 〈binding〉 is:

(〈symbol〉 〈expression〉)

For example:

> (let ((a 10)
> (b 20))
> (+ a b))
30

That can be read aloud as “let a = 10 and b = 20 in the expression a + b”.
let takes a list of bindings (name-value pairs, each pair itself a list) and a

body to execute with those bindings in effect. In this example a is given the
value 10 and b the value 20 while the body is evaluated. However if a later
expression was to ask for the value of a or b outside of the scope (the last
closing brace) of the let, there would be an error (assuming there wasn’t a
global binding of a or b in effect.)

The carefull reader will have noticed that these were described as lexically
scoped variables, and yes, any functions defined in the scope of those variables
are closures just like Perl closures and have access to those variables when
executed even if executed outside of that scope. For example:

> (define times2
> (let ((n 2))
> (lambda (x) (* n x))))
times2
> (times2 4)
8

When reading this it’s useful to remember that define does evaluate its second
argument. That means that this expression defines times2 to be the result
of evaluating the let expression. Now that let expression binds n to 2, then
returns the result of evaluating the lambda expression (creating a function) with
that binding in effect. It is that newly created function that gets bound to the
symbol times2. When times2 is later used, for example in (times2 4), the
body of the function, (* x n), can still “see” the value of n that was supplied
by the let, even though the function is executed outside of that scope. This is
similar to the common Perl trick to get a private static variable:

12

{
my $n = 2;
sub times2 {

my ($x) = @_;
$n * $x;

}
}

but to be truthful it’s closer to the more obtuse:

our $times2 = do {
my $n = 2;
sub {

my ($x) = @_;
$n * $x;

}
};

And that’s pretty much all that is needed for now. Of course the final language
has many other interesting features, but these will be introduced in later sections
as the need arises. Let’s take a look at our first cut at an interpreter.

13

4 Interpreter Version 0.0.0

This preliminary version of the interpreter supports only three operations: mul-
tiplication (*); subtraction (-); and conditional evaluation (if). It does however
lay the groundwork for more sophisticated interpreters later in the chapter.

Scheme lisp interpreters, being interactive, are based around what is called
a “read-eval-print” loop. First read an expression, then evaluate it, then print
the result. In order to evaluate the expression, there must be an environment in
which symbols can be given values and in which values can be looked up. That
means there are five principle components to such an interpreter:

A Reader that constructs internal representations of the expressions to be
evaluated;

An Evaluator that actually determines the value of the expression, using

A Structure returned by the Reader, representing the expression;

An Environment in which symbols can be associated with values and
the values of symbols can be looked up.

A Print System which converts the result of evaluation back to text and dis-
plays it to the user.

The implementation we’re about to discuss takes a fairly strict object-oriented
approach, with each of these components and pretty much everything else rep-
resented by classes of objects. This means that for example to evaluate an ex-
pression you call its Eval() method, and to print a result you call the Print()
method of the result object. There is a good deal of scope for polymorphism
with this approach, since different types of object can respond differently to the
same message.

4.1 The Read-Eval-Print Loop

The top-level read-eval-print loop (repl) for the PScheme interpreter is in the
package PScm in Listing 1. All other packages inherit from this package, although
that’s mainly just a convenience.
Firstly, on lines 30-34 a global environment, $PScm::GlobalEnv is initialized to
a new PScm::Env object.

30 our $GlobalEnv = new PScm::Env(
31 ’*’ => new PScm::Primitive::Multiply(),
32 ’-’ => new PScm::Primitive::Subtract(),
33 if => new PScm::SpecialForm::If(),
34);

There are only three things in that environment. They are the objects that will
perform the primitive operations of multiplication, subtraction and conditional
evaluation, and they’re bound to "*", "-" and "if" respectively. We’ll see how
they work presently.

ReadEvalPrint() on lines 36-45 is the central control routine of the whole
interpreter. It takes an input file handle and an output file handle as arguments.

14

01 package PScm;
02

03 use strict;
04 use warnings;
05 use PScm::Read;
06 use PScm::Env;
07 use PScm::Primitive;
08 use PScm::SpecialForm;
09

10 require Exporter;
11

12 our @ISA = qw(Exporter);
13 our @EXPORT = qw(ReadEvalPrint);
14

15 =head1 NAME
16

17 PScm - Scheme-like interpreter written in Perl
18

19 =head1 SYNOPSIS
20

21 use PScm;
22 ReadEvalPrint($in_filehandle[, $out_filehandle]);
23

24 =head1 DESCRIPTION
25

26 Just messing about, A toy lisp interpreter.
27

28 =cut
29

30 our $GlobalEnv = new PScm::Env(
31 ’*’ => new PScm::Primitive::Multiply(),
32 ’-’ => new PScm::Primitive::Subtract(),
33 if => new PScm::SpecialForm::If(),
34);
35

36 sub ReadEvalPrint {
37 my ($infh, $outfh) = @_;
38

39 $outfh ||= *STDOUT;
40 my $reader = new PScm::Read($infh);
41 while (defined(my $expr = $reader->Read)) {
42 my $result = $expr->Eval();
43 $result->Print($outfh);
44 }
45 }

listing 1: PScm.pm

15

46

47 sub Print {
48 my ($self, $outfh) = @_;
49 print $outfh $self->as_string, "\n";
50 }
51

52 sub as_string { ref($_[0]); }
53

54 sub new { bless {}, $_[0] }
55

56 1;

listing 1: PScm.pm (Cont.)

Starting on line 39 it defaults the output file handle to STDOUT, then on line 40
it creates a new PScm::Read object on the input file handle, and on lines 41-44
it enters its main loop. The loop repeatedly collects an expression from the
Reader, then evaluates the expression by calling its Eval() method, then prints
the result by calling its Print() method:

36 sub ReadEvalPrint {
37 my ($infh, $outfh) = @_;
38

39 $outfh ||= *STDOUT;
40 my $reader = new PScm::Read($infh);
41 while (defined(my $expr = $reader->Read)) {
42 my $result = $expr->Eval();
43 $result->Print($outfh);
44 }
45 }

The basis of the print system can be seen in the Print() and as string()
methods in PScm.pm, but we’re going to leave discussion of the print system until
later on. In the next section we’ll look at our first, very simple, implementation
of an environment.

4.2 The Environment

All an environment has to do is to return the current value for an argument
symbol. Perl hashes are ideal for this task, and our implementation uses them.
Our environment is implemented by PScm::Env in Listing 2.
It is no more than an object wrapper around a Perl hash. The new() method
(lines 7-13) creates an object with a set of bindings (name to value mappings)
that were passed in as arguments:

07 sub new {
08 my ($class, %bindings) = @_;
09

10 bless {

16

01 package PScm::Env;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06

07 sub new {
08 my ($class, %bindings) = @_;
09

10 bless {
11 bindings => {%bindings},
12 }, $class;
13 }
14

15 sub LookUp {
16 my ($self, $symbol) = @_;
17

18 if (exists($self->{bindings}{ $symbol->value })) {
19 return $self->{bindings}{ $symbol->value };
20 } else {
21 die "no binding for @{[$symbol->value]} ",
22 "in @{[ref($self)]}\n";
23 }
24 }
25

26 1;

listing 2: PScm/Env.pm

17

11 bindings => {%bindings},
12 }, $class;
13 }

And the LookUp() method on lines 15-24 looks up a symbol in the bindings,
die-ing if the symbol does not have a binding:

15 sub LookUp {
16 my ($self, $symbol) = @_;
17

18 if (exists($self->{bindings}{ $symbol->value })) {
19 return $self->{bindings}{ $symbol->value };
20 } else {
21 die "no binding for @{[$symbol->value]} ",
22 "in @{[ref($self)]}\n";
23 }
24 }

Note that the $symbol passed in is an object, and LookUp() must call the
symbol’s value() method to get a string suitable for a hash key. The value()
method for a symbol just returns the name of the symbol as a perl string.

Because this first version of the interpreter has no support for local variables,
this class doesn’t provide any methods for adding values to the environment.
That will come later.

And that’s all there is to our environment class. Let’s move on to look at
the Reader.

4.3 The Reader

The job of the Reader is to take a stream of text and convert it into a structure
that the evaluator can more easily work with. So for example we want to
take an expression such as (foo ("bar" 10)) and convert it into an equivalent
structure such as shown in Figure 1.
In this figure, showing the result of parsing that expression, the top-level list
object has two components. Reading left to right it contains the symbol object
foo and another list object. This sub list contains the string object "bar"
and the number object 10. It is apparent that that the structure is a direct
representation of the text, where each list corresponds to the contents of a
matching pair of braces. It should also be obvious that these structures are
practically identical to Perl list references. The scheme list (foo ("bar" 10))
corresponds directly to the nested perl listref [$foo, ["bar", 10]]4.

To simplify the creation of such a structure from an input stream, it is often
convenient to split the process into two parts:

1. A tokeniser which recognizes and returns the basic tokens of the text
(braces, symbols, numbers and strings);

2. A builder or parser which assembles those tokens into meaningful struc-
tures.

4but looks a lot prettier.

18

Figure 1: Example PScheme Expression Structure for (foo ("bar" 10))

Symbol

foo

String

"bar"

Number

10

List

List

foo "bar" 10(())

That is the approach taken by the Reader described here. It was mentioned
earlier that Scheme was extremely easy to parse, well here’s the proof. The
code for the Reader, PScm::Read in Listing 3 is only 63 lines long. As with the
rest of the implementation, it uses an object-oriented style, so the Reader is an
object that is created with an argument FileHandle and behaves as an iterator
returning the next parsed expression from the stream on each call to Read().
First of all. the new() method (lines 9-15 simply stashes its input file handle
argument along with an empty string representing the current line, and returns
them in the new object.

09 sub new {
10 my ($class, $fh) = @_;
11 bless {
12 FileHandle => $fh,
13 Line => ’’,
14 }, $class;
15 }

Apart from new() the only other publicly available method is Read(), which
returns the next complete expression, as a structure, from the input file.

The Read() method calls the private next token() method (the tokeniser)
for its tokens. Skipping over the Read() method for now, next token() on
lines 38-61 simply chomps the next token off the input stream and returns it. It
knows enough to skip whitespace and blank lines and to return undef at EOF
(lines 41-45). If there is a line left to tokenize, then a few simple regexes are
tried in turn to strip the next token from it. As soon as a token of a particular
type is recognized, it is returned to the caller.

38 sub _next_token {

19

01 package PScm::Read;
02

03 use strict;
04 use warnings;
05 use PScm::Expr;
06 use PScm::Token;
07 use base qw(PScm);
08

09 sub new {
10 my ($class, $fh) = @_;
11 bless {
12 FileHandle => $fh,
13 Line => ’’,
14 }, $class;
15 }
16

17 sub Read {
18 my ($self) = @_;
19

20 my $token = $self->_next_token();
21 return undef unless defined $token;
22

23 return $token unless $token->isa(’PScm::Token::Open’);
24

25 my @res = ();
26

27 while (1) {
28 $token = $self->Read;
29 die "unexpected EOF"
30 if !defined $token;
31 last if $token->isa(’PScm::Token::Close’);
32 push @res, $token;
33 }
34

35 return new PScm::Expr::List(@res);
36 }
37

38 sub _next_token {
39 my ($self) = @_;
40

41 while (!$self->{Line}) {
42 $self->{Line} = $self->{FileHandle}->getline();
43 return undef unless defined $self->{Line};
44 $self->{Line} =~ s/^\s+//s;
45 }

listing 3: PScm/Read.pm

20

46

47 for ($self->{Line}) {
48 s/^\(\s*// && return PScm::Token::Open->new();
49 s/^\)\s*// && return PScm::Token::Close->new();
50 s/^([-+]?\d+)\s*//
51 && return PScm::Expr::Number->new(0 + $1);
52 s/^"((?:(?:\\.)|([^"]))*)"\s*// && do {
53 my $string = $1;
54 $string =~ s/\\//g;
55 return PScm::Expr::String->new($string);
56 };
57 s/^([^\s\(\)]+)\s*//
58 && return PScm::Expr::Symbol->new($1);
59 }
60 die "can’t parse: $self->{Line}";
61 }
62

63 1;

listing 3: PScm/Read.pm (Cont.)

39 my ($self) = @_;
40

41 while (!$self->{Line}) {
42 $self->{Line} = $self->{FileHandle}->getline();
43 return undef unless defined $self->{Line};
44 $self->{Line} =~ s/^\s+//s;
45 }
46

47 for ($self->{Line}) {
48 s/^\(\s*// && return PScm::Token::Open->new();
49 s/^\)\s*// && return PScm::Token::Close->new();
50 s/^([-+]?\d+)\s*//
51 && return PScm::Expr::Number->new(0 + $1);
52 s/^"((?:(?:\\.)|([^"]))*)"\s*// && do {
53 my $string = $1;
54 $string =~ s/\\//g;
55 return PScm::Expr::String->new($string);
56 };
57 s/^([^\s\(\)]+)\s*//
58 && return PScm::Expr::Symbol->new($1);
59 }
60 die "can’t parse: $self->{Line}";
61 }
Lines 47-59 do the actual tokenisation. The tokeniser only needs to distin-
guish open and close braces, numbers, strings and symbols, where anything
that doesn’t look like an open or close brace, a number or a string must be a
symbol. next token() returns its data in objects, which incidentally happens

21

to be a very convenient way of tagging the type of token returned. The objects
are of two basic types: PScm::Token; and PScm::Expr.

The PScm::Token types PScm::Token::Open and PScm::Token::Close rep-
resent an open and a close brace respectively, and contain no data. The three
PScm::Expr types, PScm::Expr::Number, PScm::Expr::String and PScm::
Expr::Symbol (numbers, strings and symbols) contain the relevant number,
string or symbol.

Now that we know how get token() works, we can go back and take a look
at Read().

The Read() method (lines 17-36) has to return the next complete expression
from the input stream. That could be a simple atom, or an arbitrarily nested
list. It starts by calling next token() at line 20 and returning undef if next -
token() returned undef (signifying end of file).

17 sub Read {
18 my ($self) = @_;
19

20 my $token = $self->_next_token();
21 return undef unless defined $token;
22

23 return $token unless $token->isa(’PScm::Token::Open’);
24

25 my @res = ();
26

27 while (1) {
28 $token = $self->Read;
29 die "unexpected EOF"
30 if !defined $token;
31 last if $token->isa(’PScm::Token::Close’);
32 push @res, $token;
33 }
34

35 return new PScm::Expr::List(@res);
36 }
Then, at line 23 if the token is anything other than an open brace (a PScm::
Token::Open), Read() just returns it. Otherwise, the token just read is an open
brace, so Read() initializes an empty result @res to hold the list it expects to
accumulate then enters a loop calling itself recursively to collect the (possibly
nested) components of the list. It is an error if it detects EOF while a list is
unclosed, and if it detects a close brace it knows its work is done and it returns
the accumulated list as a new PScm::Expr::List object.

The structure returned by Read() is completely composed of subtypes of
PScm::Expr, since the PScm::Token types do not actually get entered into
the structure. Let’s work through the parsing of that simple expression (foo
("bar" 10)). The subscript number keeps track of which particular invocation
of Read() we are talking about.

• Read1 calls next token() and gets a ’(’ so it enters its loop.

• Read1 calls Read2 from within its loop.

22

– Read2 calls next token() and gets a foo, so it returns it.

• Read1 puts the foo at the start of its list: [foo.

• Read1 calls Read3.

– Read3 calls next token and gets a ’(’ so it enters its loop.

– Read3 calls Read4.

∗ Read4 calls next token and gets a "bar" so it returns it.

– Read3 puts the "bar" at the start of its list: ["bar".

– Read3 calls Read5.

∗ Read5 calls next token and gets a 10 so it returns it.

– Read3 adds the 10 to its growing list: ["bar" 10.

– Read3 calls Read6.

∗ Read6 calls next token and gets a ’)’ so it returns it.

– Read3 gets the ’)’ so it knows it has reached the end of its list and
returns it: ["bar" 10].

• Read1 adds the ["bar" 10] to the end of its own growing list: [foo
["bar" 10].

• Read1 calls Read7.

– Read7 calls next token and gets a ’)’ so it returns it.

• Read1 gets the ’)’ so it knows it has reached the end of its list and returns
it: [foo ["bar" 10]].

So the Reader does indeed return the structure expected.
The PScm::Token and PScm::Expr classes are in their eponymous files. The

PScm::Token classes in Listing 4 are purely parse-related. As mentioned earlier,
they are returned by the tokeniser to indicate open and close braces. These
tokens are used to guide the parser, but it does not actually include them in
the result. PScm::Token::Open and PScm::Token::Close both inherit from
PScm::Token. There are no methods in any of those three classes. PScm::
Token inherits a stub new() method from the PScm class that just blesses an
empty hash with the argument class.
As for the PScm::Expr objects that Read() accumulates and returns, as noted
Read() has done all of the work in constructing a tree of them for us, so they
are more properly discussed in the next section where we look at expressions.

4.4 PScheme Expressions

The various PScm::Expr objects are defined in PScm/Expr.pm. These objects
represent the basic data types that are visible to the user: strings; numbers;
symbols; and lists (expressions). They are the types returned by the Reader
and printed by the print system. It would be premature to go into all the
details of the PScm::Expr package right now, but it is worth pointing out a few
salient features about it.

23

01 package PScm::Token;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06

07 ###########################
08 package PScm::Token::Open;
09

10 use base qw(PScm::Token);
11

12 #########################
13 package PScm::Token::Close;
14

15 use base qw(PScm::Token);
16

17 1;

listing 4: PScm/Token.pm

Figure 2: PScm::Expr classes

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom

PScm::Expr::Literal PScm::Expr::Symbol

PScm::Expr::String PScm::Expr::Number

Firstly the classes arrange themselves in a Composite Pattern according to
the hierarchy of PScheme types as in Figure 2.
This figure is drawn using a standard set of conventions for diagramming the
relationships between classes in an object-oriented design, called “the Unified
Modelling Language”, or UML.

24

For those who don’t know UML, the white triangular shape means “inherits
from” or “is a subclass of”, and the black arrow and circle coming from the white
diamond means “aggregates one or more of”. The classes with names in italics
are “abstract” classes. As far as Perl is concerned, calling a class “abstract”
just means that we promise not to create any actual object instances of that
particular class.

The root of the hierarchy is PScm::Expr, representing any and all expres-
sions. That divides into lists (PScm::Expr::List) and atoms (PScm::Expr::
Atom).

Lists are composed of expressions (the aggregation relationship.)
Atoms represent any data type that cannot be trivially taken apart, any-

thing that’s not a list in other words. Atoms are subclassed into literals (PScm::
Expr::Literal) and symbols (PScm::Expr::Symbol), and literals are subclassed
into strings (PScm::Expr::String) and numbers (PScm::Expr::Number).

We’ll see a lot of this diagram in various guises as we progress. Here’s the
same diagram, with the location of the new() and value() methods added.

Figure 3: PScm::Expr new() and value() methods

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom

PScm::Expr::Literal PScm::Expr::Symbol

PScm::Expr::String PScm::Expr::Number

new
value

new
value

This brings us to the second salient point. There are only two new() methods in
the whole class structure. The PScm::Expr::Atom abstract class is the parent
class for strings and numbers (via PScm::Expr::Literal) and for symbols.
Since all of these types are simple scalars, the new() method in PScm::Expr::
Atom does for all of them: it just blesses a reference to the scalar into the
appropriate class.

16 sub new {
17 my ($class, $value) = @_;

25

18 bless \$value, $class;
19 }
The PScm::Expr::List class has the other new() method that simply bundles
up its argument Perl list in a new object:

29 sub new {
30 my ($class, @list) = @_;
31

32 $class = ref($class) || $class;
33 bless [@list], $class;
34 }
Both of these methods have already been seen in action in the Reader.

Alongside each new() method is an analogous value() method that does
the exact reverse of new() and retrieves the underlying value from the object.
In the case of atoms, it dereferences the scalar value:

21 sub value { ${ $_[0] } }
and in the case of lists, it dereferences the list:

36 sub value { @{ $_[0] } }
We’ve seen that the various PScheme expression types (lists, numbers, strings
and symbols) arrange themselves naturally into a hierachy of types and also
form a recognised design pattern called “Composite”. Next we’re going to look
at how those expressions are evaluated by the interpreter.

4.5 Evaluation

To evaluate a PScm::Expr structure, as mentioned earlier, the top level Read-
EvalPrint() loop just calls the structure’s Eval() method. The Eval() meth-
ods of PScm::Expr are located in three of its subclasses as shown in Figure
4.
The figure shows that there is a separate Eval() method for lists, literals and
symbols. Let’s look first at the Eval() methods for literals. PScm::Expr::
String and PScm::Expr::Number are both subclasses of PScm::Expr::Literal
and the Eval() method there, which they share, just returns $self:

74 sub Eval {
75 my ($self) = @_;
76 return $self;
77 }
This means that numbers and strings evaluate to themselves, as they should.

Evaluation of a symbol is only slightly more complex. The Eval() method
in PScm::Expr::Symbol looks up its value in the global environment $PScm::
GlobalEnv:

65 sub Eval {
66 my ($self) = @_;
67 return $PScm::GlobalEnv->LookUp($self);
68 }

26

Figure 4: PScm::Expr Eval() Methods

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom

PScm::Expr::Literal PScm::Expr::Symbol

PScm::Expr::String PScm::Expr::Number

Eval

Eval Eval

Remember that LookUp() expects a symbol object as argument and calls its
value() method to get a string that it can then use to retrieve the actual value
from the environment.

Before showing how PScm::Expr::List objects are evaluated, we need to
consider a couple of support methods for lists, first() and rest().

The first() method of PScm::Expr::List just returns the first component
of the list:

38 sub first { $_[0][0] }
The rest() method of PScm::Expr::List returns all but the first component
of the list as a new PScm::Expr::List object:

40 sub rest {
41 my ($self) = @_;
42

43 my @value = $self->value;
44 shift @value;
45 return $self->new(@value);
46 }
Now we can look at the evaluation of list expressions. Here’s PScm::Expr::
List::Eval():

55 sub Eval {
56 my ($self) = @_;
57 my $op = $self->first()->Eval();

27

58 return $op->Apply($self->rest);
59 }

It’s surprisingly simple. a PScm::Expr::List just evaluates its first element
(line 57). That should return one of PScm::Primitive::Multiply, PScm::
Primitive::Subtract or PScm::SpecialForm::If, which gets assigned to $op.
Of course because we’re not doing any error checking, first() could return
anything, so we’re assuming valid input.

Because Eval() does not know or care whether the operation $op it derived
on line 57 is a simple primitive or a special form, on line 58 it passes the rest
of itself unevaluated to that operations Apply() method which decides whether
or not to evaluate the arguments, and what to do with them afterwards5.

So we’ve seen how PScm::Expr objects evaluate themselves. In particular
we’ve seen how a list evaluates itself by evaluating its first component to get a
primitive operation or special form, then calling that object’s Apply() method
with the rest of the list, unevaluated, as argument. Next we’re going to look at
how one of those types, the PScm::Primitive type, implements that Apply()
method.

4.6 Primitive Operations

The primitive built-in functions all live in PScm/Primitive.pm, shown in Listing
5
This class holds all of the code for simple functions that can be passed already
evaluated arguments. It would be fairly trivial to add a lot of functionality in
here, but it is deliberately kept to only a bare minimum of functions so that the
code is short and easy to digest.

The base PScm::Primitive class provides the Apply() method:

08 sub Apply {
09 my ($self, $form) = @_;
10

11 my @unevaluated_args = $form->value;
12 my @evaluated_args = map { $_->Eval() } @unevaluated_args;
13 return $self->_apply(@evaluated_args);
14 }

This extracts the arguments to the operation from the $form by calling the
$form’s value() method. $form is a PScm::Expr::List and we’ve already
seen that the value() method for a list object dereferences and returns the
underlying list. Apply() evaluates each argument by mapping a call to each
one’s Eval() method and then passes the resulting list to a private apply()
method.

apply() is implemented differently by each primitive operation. So each
subclass of PScm::Primitive only needs an apply() method which will be
called with a list of already evaluated arguments.

5Lisp purists might raise an eyebrow at this point, because Eval() is supposed to know
what kind of form it is evaluating and decide whether or not to evaluate the arguments. But
this is an object-oriented application, and it makes much more sense to leave that decision to
the objects that need to know.

28

01 package PScm::Primitive;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06 use PScm::Expr;
07

08 sub Apply {
09 my ($self, $form) = @_;
10

11 my @unevaluated_args = $form->value;
12 my @evaluated_args = map { $_->Eval() } @unevaluated_args;
13 return $self->_apply(@evaluated_args);
14 }
15

16 sub _check_type {
17 my ($self, $thing, $type) = @_;
18

19 die "wrong type argument(", ref($thing),
20 ") to ", ref($self), "\n"
21 unless $thing->isa($type);
22 }
23

24 ##################################
25 package PScm::Primitive::Multiply;
26

27 use base qw(PScm::Primitive);
28

29 sub _apply {
30 my ($self, @args) = @_;
31

32 my $result = 1;
33

34 while (@args) {
35 my $arg = shift @args;
36 $self->_check_type($arg, ’PScm::Expr::Number’);
37 $result *= $arg->value;
38 }
39

40 return new PScm::Expr::Number($result);
41 }
42

43 ##################################
44 package PScm::Primitive::Subtract;
45

listing 5: PScm/Primitive.pm

29

46 use base qw(PScm::Primitive);
47

48 sub _apply {
49 my ($self, @args) = @_;
50

51 unshift @args, PScm::Expr::Number->new(0) if @args < 2;
52

53 my $arg = shift @args;
54 $self->_check_type($arg, ’PScm::Expr::Number’);
55

56 my $result = $arg->value;
57

58 while (@args) {
59 $arg = shift @args;
60 $self->_check_type($arg, ’PScm::Expr::Number’);
61 $result -= $arg->value;
62 }
63

64 return new PScm::Expr::Number($result);
65 }
66

67 1;

listing 5: PScm/Primitive.pm (Cont.)

The apply() in PScm::Primitive::Multiply is very straightforward. It
simply multiplies its arguments together and returns the result as a new PScm::
Expr::Number. Note that, somewhat accidentally, if only given one argument
it will simply return it, and if given no arguments it will return 1.

29 sub _apply {
30 my ($self, @args) = @_;
31

32 my $result = 1;
33

34 while (@args) {
35 my $arg = shift @args;
36 $self->_check_type($arg, ’PScm::Expr::Number’);
37 $result *= $arg->value;
38 }
39

40 return new PScm::Expr::Number($result);
41 }
The check type() method in the base class just saves us some typing, since
we are checking the type of argument to the primitive:

16 sub _check_type {
17 my ($self, $thing, $type) = @_;

30

18

19 die "wrong type argument(", ref($thing),
20 ") to ", ref($self), "\n"
21 unless $thing->isa($type);
22 }
PScm::Primitive::Subtract’s apply() method is more complicated only be-
cause it distinguishes between unary negation (- x) and subtraction. If it gets
only one argument it returns its negation, otherwise it subtracts subsequent
arguments from the first one. It will return 0 if called with no arguments.

48 sub _apply {
49 my ($self, @args) = @_;
50

51 unshift @args, PScm::Expr::Number->new(0) if @args < 2;
52

53 my $arg = shift @args;
54 $self->_check_type($arg, ’PScm::Expr::Number’);
55

56 my $result = $arg->value;
57

58 while (@args) {
59 $arg = shift @args;
60 $self->_check_type($arg, ’PScm::Expr::Number’);
61 $result -= $arg->value;
62 }
63

64 return new PScm::Expr::Number($result);
65 }
That’s all the primitive operations we support. There are a whole host of others
that could trivially be added here and it might be entertaining to add them,
but the really interesting stuff will all be happening over in the special forms,
discussed next.

4.7 Special Forms

All the code for special forms is in PScm/SpecialForm.pm in Listing 6.
At the moment there is only one special form, if, so the listing is short. It will
get longer in subsequent versions though.

For special forms, the Apply() method is in the individual operation’s class.
On line 16 PScm::SpecialForm::If’s Apply() method extracts the condition,
the expression to evaluate if the condition is true, and the expression to evaluate
if the condition is false, from the argument $form. Then on line 18 it evaluates
the condition, and calls the result’s isTrue()method to determine which branch
to evaluate:

12 sub Apply {
13 my ($self, $form) = @_;
14

15 my ($condition, $true_branch, $false_branch) =

31

01 package PScm::SpecialForm;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06

07 ##############################
08 package PScm::SpecialForm::If;
09

10 use base qw(PScm::SpecialForm);
11

12 sub Apply {
13 my ($self, $form) = @_;
14

15 my ($condition, $true_branch, $false_branch) =
16 $form->value;
17

18 if ($condition->Eval()->isTrue) {
19 return $true_branch->Eval();
20 } else {
21 return $false_branch->Eval();
22 }
23 }
24

25 1;

listing 6: PScm/SpecialForm.pm

32

16 $form->value;
17

18 if ($condition->Eval()->isTrue) {
19 return $true_branch->Eval();
20 } else {
21 return $false_branch->Eval();
22 }
23 }
If the condition is true, PScm::SpecialForm::If::Apply() evaluates and re-
turns the true branch (line 19), otherwise it evaluates and returns the false
branch (line 21). The decision of what is true or false is delegated to an is-
True()method. The one and only isTrue()method is defined in PScm/Expr.pm
right at the top of the data type hierarchy, in the PScm::Expr class as:

07 sub isTrue {
08 my ($self) = @_;
09 scalar($self->value);
10 }
Remembering that value() just dereferences the underlying list or scalar, is-
True() then pretty much agrees with Perl’s idea of truth, namely that zero, the
empty string, and the empty list are false, everything else is true6.

4.8 Output

Now we’re going to take a look at the print system.
After Eval() returns the result to the repl, ReadEvalPrint() calls the re-

sult’s Print() method with the output handle as argument. That method is
defined in PScm.pm

47 sub Print {
48 my ($self, $outfh) = @_;
49 print $outfh $self->as_string, "\n";
50 }
All it does is print the string representation of the object obtained by calling its
as string() method. A fallback as string() method is provided in this class
at line 52.

52 sub as_string { ref($_[0]); }
It just returns the class name of the object. This is needed occasionally in
the case where internals such as primitive operations might be returned by the
evaluator, for example:

> *
PScm::Primitive::Multiply

But that is an unusual and usually unintentional situation. The main as -
string() methods are strategically placed around the by now familiar PScm::
Expr hierarchy, as shown in Figure 5.
The as string() method in PScm::Expr::Atom is just a call to value():

6This differs from a true Scheme implementation where special boolean values #t and #f

represent truth and falsehood, and everything else is true.

33

Figure 5: PScm::Expr as string() methods

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom

PScm::Expr::Literal PScm::Expr::Symbol

PScm::Expr::String PScm::Expr::Number

as_string as_string

as_string

23 sub as_string { $_[0]->value }

That method works for both symbols and numbers.
PScm::Expr::List’s as string() method returns a string representation

of the list by recursively calling as string() on each of its components and
concatenating the result, separated by spaces and wrapped in braces7.

48 sub as_string {
49 my ($self) = @_;
50 return ’(’ .
51 join(’ ’, map { $_->as_string } $self->value) .
52 ’)’;
53 }

Finally, PScm::Expr::String’s as string() method at lines 87-94 overrides
the one in PScm::Expr::Atom because it needs to put back any backslashes
that the parser took out, and wrap itself in double quotes.

87 sub as_string {
88 my ($self) = @_;
89

90 my $copy = $self->value;
91 $copy =~ s/\\/\\\\/sg;

7We haven’t seen anything yet that might, when evaluated, return a list for printing. That’s
for later.

34

92 $copy =~ s/"/\\"/sg;
93 return qq’"$copy"’;
94 }

4.9 Summary

We’re finally in a position to understand the whole of PScm::Expr as shown in
Listing 7.
The final version of our diagram, with all of the methods from PScm::Expr in
place is shown in Figure 6.

Figure 6: PScm::Expr methods

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom

PScm::Expr::Literal PScm::Expr::Symbol

PScm::Expr::String PScm::Expr::Number

isTrue

new
value
as_string

new
value
first
rest
as_string
Eval

EvalEval

as_string

That may seem like a lot of code for what is effectively just a pocket calculator,
but what has been done is to lay the groundwork for a much more powerful set
of language constructs that can be added in subsequent sections. Let’s recap
with an overview of the whole thing.

• A global environment is set up in the PScm package, containing bindings
for defined operations.

• The top-level read-eval-print loop (repl) in the PScm package creates a
PScm::Read object and calls its Read() method.

35

01 package PScm::Expr;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06

07 sub isTrue {
08 my ($self) = @_;
09 scalar($self->value);
10 }
11

12 ##########################
13 package PScm::Expr::Atom;
14 use base qw(PScm::Expr);
15

16 sub new {
17 my ($class, $value) = @_;
18 bless \$value, $class;
19 }
20

21 sub value { ${ $_[0] } }
22

23 sub as_string { $_[0]->value }
24

25 ##########################
26 package PScm::Expr::List;
27 use base qw(PScm::Expr);
28

29 sub new {
30 my ($class, @list) = @_;
31

32 $class = ref($class) || $class;
33 bless [@list], $class;
34 }
35

36 sub value { @{ $_[0] } }
37

38 sub first { $_[0][0] }
39

40 sub rest {
41 my ($self) = @_;
42

43 my @value = $self->value;
44 shift @value;
45 return $self->new(@value);

listing 7: PScm/Expr.pm

36

46 }
47

48 sub as_string {
49 my ($self) = @_;
50 return ’(’ .
51 join(’ ’, map { $_->as_string } $self->value) .
52 ’)’;
53 }
54

55 sub Eval {
56 my ($self) = @_;
57 my $op = $self->first()->Eval();
58 return $op->Apply($self->rest);
59 }
60

61 ############################
62 package PScm::Expr::Symbol;
63 use base qw(PScm::Expr::Atom);
64

65 sub Eval {
66 my ($self) = @_;
67 return $PScm::GlobalEnv->LookUp($self);
68 }
69

70 #############################
71 package PScm::Expr::Literal;
72 use base qw(PScm::Expr::Atom);
73

74 sub Eval {
75 my ($self) = @_;
76 return $self;
77 }
78

79 ############################
80 package PScm::Expr::Number;
81 use base qw(PScm::Expr::Literal);
82

83 ############################
84 package PScm::Expr::String;
85 use base qw(PScm::Expr::Literal);
86

87 sub as_string {
88 my ($self) = @_;
89

listing 7: PScm/Expr.pm (Cont.)

37

90 my $copy = $self->value;
91 $copy =~ s/\\/\\\\/sg;
92 $copy =~ s/"/\\"/sg;
93 return qq’"$copy"’;
94 }
95

96 1;

listing 7: PScm/Expr.pm (Cont.)

• That Read()method returns PScm::Expr objects which the repl evaluates.
It evaluates them by calling their Eval() method.

– PScm::Expr::Number and PScm::Expr::String objects both share
an Eval() method that just returns the object unevaluated.

– PScm::Expr::Symbol objects have an Eval() method that looks up
the value of the symbol in the environment.

– PScm::Expr::List objects have an Eval() method that evaluates
the first component of the list, which should return a primitive oper-
ation, then calls that operations Apply() method with the remaining
unevaluated components of the list as argument. What happens next
depends on the type of the operation.

∗ PScm::Primitive objects share an Apply() method that evalu-
ates each of the arguments and then passes them to the individual
primitive’s private apply() method.

∗ PScm::SpecialForm objects each have their own Apply() meth-
od that decides whether, and how, to evaluate the arguments.

• The repl then takes the result of the evaluation and calls its Print()
method, which is defined in the PScm base class.

– That Print() method just calls $self->as string() and prints the
result. The PScm::Expr::Atom class has an as string() method
that returns the underlying scalar, but PScm::Expr::String pro-
vides an override that wraps the result in double quotes. The PScm::
Expr::List class has an as string() method that recursively calls
as string() on its components and returns the result wrapped in
braces.

At the heart of the whole interpreter is the dynamic between Eval() which
evaluates expressions, and Apply() which applies operations to their arguments.

4.10 Tests

Here’s a test module for our first version of the interpreter in Listing 8. The
evaluate sub just takes a string expression, writes it out to a file, and calls Read-
EvalPrint() on it, with the output redirected to another file. It then reads that

38

01 use strict;
02 use warnings;
03 use Test::More tests => 9;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) };
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22 # warn "# [$res]\n";
23 return $res;
24 }
25

26 ok(evaluate(’1’) eq ’1’, ’numbers’);
27 ok(evaluate(’+1’) eq ’1’, ’explicit positive numbers’);
28 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
29 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
30 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
31 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
32 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
33 ok(evaluate(’(if (* 0 1) 10 20)’) eq ’20’, ’simple conditional’);
34

35 # vim: ft=perl

listing 8: t/PScm.t

39

output back in and returns it as a string. The various simple tests just exercise
the system.

To allow users to play a little more with the interpreter, there’s a tiny inter-
active shell that requires Term::ReadLine::Gnu and the libreadline library.
It’s in t/interactive and can be run, without installing the interpreter, by
doing:

$ perl -Ilib ./t/interactive

from the root of any version of the distribution. It’s short enough to show here
in its entirety.

01 use PScm;
02

03 package GetLine;
04

05 use Term::ReadLine;
06 sub new {
07 my ($class) = @_;
08 bless {
09 term => new Term::ReadLine(’PScheme’),
10 }, $class;
11 }
12

13 sub getline {
14 my ($self) = @_;
15 $self->{term}->readline(’> ’);
16 }
17

18 package main;
19

20 my $in = new GetLine();
21

22 ReadEvalPrint($in);
23

24 # vim: ft=perl

listing 9: t/interactive

40

5 Interpreter Version 0.0.1—Implementing ���

let allows the extension of the environment, temporarily, to include new bind-
ings of symbols to data. Of course the Environment that has been described so
far is not extensible, so the first thing to do is to look at how we might change
the environment package to allow extension.

5.1 The Environment

Remember the original environment implementation from Listing 2, where we
just created an object wrapper around a Perl hash. We can build on this idea,
but we need to think a bit harder about what it means to extend an environment.
It would be a good idea to keep the extensions separate from what is already
in the environment, so that they can be easily undone when the time comes.
It’s a really bad idea to just poke more key-value pairs into that hash; the cost
of working out what, and how, to undo those changes could be prohibitive.
Therefore, each extension should have its own object hash.

A useful distinction to make at this point is between any individual hash,
and the environment as a whole. When the text refers to the environment as a
whole It’ll just say “the environment”, but when It’s talking about a particular
object hash component, It’ll say “environment frame”, or just “frame”.

A simple extension then, and one which a number of programming languages
do in fact implement, is a stack of environment frames. A new frame containing
the new bindings is pushed on top of the old, and the LookUp() method starts
at the top of the stack and works its way down until it either finds a binding for
the argument symbol, or hits the bottom of the stack and signals an error. To
restore the previous environment, the top frame is simply popped off the stack
again.

Perl lists have push and pop operations, so we could easily use those. Al-
ternatively we could keep a current “top of stack” index, and increment that to
push, or decrement it to pop, something like:

sub push {
my ($self, $frame) = @_;
$self->{stack}[$self->{index}] = $frame;
++$self->{index};

}

sub pop {
my ($self) = @_;
--$self->{index};
die "stack underflow" if $self->{index} < 0;
return $self->{stack}[$self->{index}];

}

This has the minor advantage of not immediately loosing what was previously
on the top of the stack after a pop().

The major drawback of a stack is that it is a linear structure, and extending
the stack again necessarily obliterates what was previously there, see Figure
7. If we plan at a later stage to support closure, where functions hang on

41

to their environments after control has left them, then a stack is obviously
inadequate unless some potentially complex additional code protects and copies
those vunerable environment frames.

Figure 7: Stacks Destroy Old Environment Frames

Frame1 Frame1

Frame2

grow

Frame1

shrink

Frame2

grow

Frame1

Frame3

Enter the linked list. A linked list is just a collection of objects, hashes or
whatever, where each one contains a reference to the next one on the list. If an
environment, rather than being a stack of frames, was a linked list of frames,
then just as with a stack, PScm::Env::LookUp() need only walk through the
chain until it finds the first (most local) occurrence of the symbol and return
that. The advantage of a linked list is that many environment frames can share
the same parent, and creating a new child frame does not destroy the previous
frame, see Figure 8.

Figure 8: Linked Lists Don’t Destroy Old Environment Frames

Frame1 Frame1

Frame2

grow

Frame1

shrink grow

Frame1

Frame3Frame2 Frame2

As long as something continues to hold a reference to the old Frame2 in this
figure, then it will not be garbage collected and remains as valid as any other
environment.

Here’s PScm::Env::LookUp() modified to use a linked list.

29 sub LookUp {
30 my ($self, $symbol) = @_;
31

32 if (exists($self->{bindings}{ $symbol->value })) {
33 return $self->{bindings}{ $symbol->value };
34 } ���
	 �����	��{������}� {
35 ������ ����	��{������}��������������
36 } else {
37 die "no binding for @{[$symbol->value]} ", "in @{[ref($self)]}\n";
38 }
39 }
The only change is on lines 34–35 where if LookUp() can’t find the symbol in
the current environment frame it looks in its parent frame, if it has one.

42

The PScm::Env::new() method is little changed, it additionally checks the
argument class in case new() is being called as an object method, and adds a
parent field to the object, with an initial zero value meaning “no parent”.

07 sub new {
08 my ($class, %bindings) = @_;
09

10 ������ ! ��	�������� "" ������

11 bless {
12 bindings => {%bindings},
13 ������ !� #$

14 }, $class;
15 }
Finally we need an Extend() method that will create a new environment from
an existing one by creating a new frame with the new bindings, and setting the
new frame’s parent to be the original environment.

17 sub Extend {
18 my ($self, $ra_symbols, $ra_values) = @_;
19

20 my %bindings = ();
21 my @names = map { $_->value } @$ra_symbols;
22 my @values = map { $_->Eval($self) } @$ra_values;
23 @bindings{ @names } = @values;
24 my $new = $self->new(%bindings);
25 $new->{parent} = $self;
26 return $new;
27 }
Because the Extend() method will be used by let it takes a reference to an
array of symbols and a reference to an array of values, rather than the simple
%initial hash that new() takes. It maps the symbols to a list of strings (line
21) and the values to a list of their evaluated equivalents (line 22). Then on
line 23 it populates a hash with these and on line 24, creates a new environment
with that hash. Finally on line 25 it sets that new environment’s parent to be
the original environment $self and returns the new environment.

We’ll se what that passing of $self to Eval() on line 22 is about in the
next section.

5.2 Global Environments have a Problem

Assume our interpreter already has let installed as PScm::SpecialForm::Let,
and is about to evaluate the (+ a b) part of the expression

(let ((a 10)
(b 20))

(+ a b))

It will have already extended the environment with the bindings for a and b so
the global environment at that point will look like Figure 9.
Now, consider what let might have had to do to extend the environment and
might have to do to restore it again afterwards:

43

Figure 9: Environment during evaluation of example “let”

"if"

"*"

"-"

"let"

PScm::Env

"a"

"b"

PScm::Expr::Number

PScm::Expr::Number

10

20

PScm::Env

Pscm::SpecialForm::Let

PScm::SpecialForm::Subtract

PScm::SpecialForm::Multiply

PScm::SpecialForm::If

parent

1. Save the current value of $PScm::GlobalEnv;

2. Call Extend() on $PScm::GlobalEnv to get a new one with a and b ap-
propriately bound;

3. Assign that new environment to $PScm::GlobalEnv;

4. Call Eval() on the expression (+ a b) and save the result;

5. Restore the previous value of $PScm::GlobalEnv;

6. Return the result of evaluating the body.

There’s something not quite right there, something ugly. We’ve made it the
responsibility of let to restore that previous environment, and if we go down
that road, all of the other operations that extend environments will similarly
be required to restore the environment for their callers. There’s another bit of
ugliness too, the simple existence of a global variable. It’s the only one in our
application. Does it have to be there? What could replace it?

5.3 Environment Passing

You are asked to take a leap of faith here when it is suggested that a better mech-
anism is to pass the environment around between Eval() and Apply() within
the interpreter. Just suppose that Eval() was given the current environment as
argument along with the expression to evaluate. Furthermore suppose that it
passed the environment to Apply(). Now we’ve already seen that Special Forms
(of which let is one,) each have their own Apply() method, so how would let’s
Apply() look if the environment were passed in? It would:

44

1. Call Extend() on the argument environment to get a new one with a and
b appropriately bound;

2. Return the result of calling Eval() on the expression (+ a b) with the
new environment as argument.

Isn’t that better!8

Because environments would be local (my) variables, and because PScm::
Env::Extend() does not alter the original environment in any way, we can rely
Perl’s own garbage collection take care of old unwanted environments for us.

The changes to our interpreter to make this happen are in fact quite limited.
Fist of all, because Eval() now expects an environment as argument, the top-
level PScm::ReadEvalPrint() must create one and pass it in. Note that it
is the same as the $PScm::GlobalEnv from our previous interpreter, with the
addition of a binding for let.

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval�
37 ��% ����������

38 ��� !� ��% ����������
��&�������()$
39 '(' !� ��% ��������
�
�
����)���
���()$
40 '�' !� ��% ��������
�
�
������������()$
41
	 !� ��% ����������
��&����*	()$
42 �

43 �;
44 $result->Print($outfh);
45 }
46 }

The Eval() method for literal atoms (strings and numbers) is functionally un-
changed. It ignores any argument environment because literals evaluate to them-
selves.

71 package PScm::Expr::Literal;
72 use base qw(PScm::Expr::Atom);
73

74 sub Eval {
75 my ($self$ ����) = @_;
76 return $self;
77 }
78

79 ############################

8If the improvement to the design of let does not warrant such a drastic change, it should
be noted that closure is much easier to implement with this model and could be egregiously
difficult to implement otherwise.

45

The Eval() method for symbols now uses the argument environment rather
than a global one in which to lookup its value:

62 package PScm::Expr::Symbol;
63 use base qw(PScm::Expr::Atom);
64

65 sub Eval {
66 my ($self$ ����) = @_;
67 return ����->LookUp($self);
68 }
69

70 #############################

The Eval() method for lists (expressions) is little changed either, it evaluates
the operation in the current (argument) environment then calls the operation’s
Apply() method, passing the current environment as an additional argument.

55 sub Eval {
56 my ($self$ ����) = @_;
57 my $op = $self->first()->Eval������;
58 return $op->Apply($self->rest$ ����);
59 }

Apply() must change too. As shown earlier, There is one Apply() method
for all PScm::Primitive classes, which evaluates all of the arguments to the
primitive operation then calls the operation’s private apply() method with its
pre-evaluated arguments. That needs to change only to evaluate those argu-
ments in the current (argument) environment:

08 sub Apply {
09 my ($self, $form$ ����) = @_;
10

11 my @unevaluated_args = $form->value;
12 my @evaluated_args = map { $_->Eval������ } @unevaluated_args;
13 return $self->_apply(@evaluated_args);
14 }

Note particularly that there is no need to pass the environment to the private
apply() method: since all its arguments are already evaluated it has no need of
an environment to evaluate anything in. Therefore the primitive multiply and
subtract operations are unchanged from the previous version of the interpreter.

The Apply() method for special forms is separately implemented by each
special form. In our previous interpreter there was only one special form: if,
so let’s take a look at how that has changed.

28 package PScm::SpecialForm::If;
29

30 use base qw(PScm::SpecialForm);
31

32 sub Apply {

46

33 my ($self, $form$ ����) = @_;
34

35 my ($condition, $true_branch, $false_branch) =
36 $form->value;
37

38 if ($condition->Eval������->isTrue) {
39 return $true_branch->Eval������;
40 } else {
41 return $false_branch->Eval������;
42 }
43 }
44

45 1;

Pretty simple, The only change is that PScm::SpecialForm::If::Apply()
passes its additional argument $env to each call to Eval().

Finally, as we saw in the previous section, the Extend() method of PScm::
Env passes the current environment, $self, to each call to Eval():

17 sub Extend {
18 my ($self, $ra_symbols, $ra_values) = @_;
19

20 my %bindings = ();
21 my @names = map { $_->value } @$ra_symbols;
22 my @values = map { $_->Eval($self) } @$ra_values;
23 @bindings{ @names } = @values;
24 my $new = $self->new(%bindings);
25 $new->{parent} = $self;
26 return $new;
27 }

5.4 ��� Itself

Now we’re done, we can look at that implementation of PScm::SpecialForm::
Let::Apply() in our environment passing interpreter.

Remember that let has the general form:

(let (〈binding〉 ...) 〈expression〉)

where 〈binding〉 is:

(〈symbol〉 〈expression〉)

So, with that in mind, here’s the Apply() method.

08 package PScm::SpecialForm::Let;
09

10 use base qw(PScm::SpecialForm);
11

12 sub Apply {

47

13 my ($self, $form, $env) = @_;
14

15 my ($bindings, $body) = $form->value;
16 my (@symbols, @values);
17

18 foreach my $binding ($bindings->value) {
19 my ($symbol, $value) = $binding->value;
20 push @symbols, $symbol;
21 push @values, $value;
22 }
23

24 return $body->Eval($env->Extend(\@symbols, \@values));
25 }
26

27 ##############################

It starts off at line 15 extracting the bindings (first list) and body (second list)
from the argument form. Then it sets up two empty lists to collect the symbols
(line 16) and the values (line 16) separately. Then in the loop on lines 18-22 it
iterates over each binding collecting the unevaluated symbol in one list and the
unevaluated argument in the other (remember that the environment’s Extend
method will evaluate the expressions in the @values list). Finally on line 24
it calls the body’s Eval() method with an extended environment where those
symbols are bound to those values.

Line 24 encapsulates our new simple definition for let quite concisely. The
environment created by Extend() is passed directly to Eval() and the result of
calling Eval() is returned directly.

5.5 Summary

In order to get let working easily we had to make two changes to the original
implementation. Firstly adding an Extend method to the PScm::Env class to
create new environments, and secondly altering the various Eval() and Apply()
methods to pass the environment as argument rather than using a global envi-
ronment. Having done that, the actual implementation of let was trivial.

5.6 Tests

Tests added to PScm.t from the 0.0.1 interpreter are here.

48

01 use strict;
02 use warnings;
03 use Test::More tests => 11;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) };
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22 # warn "# [$res]\n";
23 return $res;
24 }
25

26 ok(evaluate(’1’) eq ’1’, ’numbers’);
27 ok(evaluate(’+1’) eq ’1’, ’positive numbers’);
28 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
29

30 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
31

32 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
33 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
34 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
35

36 ok(evaluate(’(let ((x 2)) x)’) eq ’2’, ’simple let’);
37

38 ok(evaluate(’(if 0 10 20)’) eq ’20’, ’simple conditional’);
39

40 ok(evaluate(<<EOF) eq ’20’, ’conditional evaluation’);
41 (let ((a 00)
42 (b 10)
43 (c 20))
44 (if a b c))
45 EOF

listing 10: t/PScm.t

49

46

47 # vim: ft=perl

listing 10: t/PScm.t (Cont.)

50

6 Interpreter Version 0.0.2—Implementing ������

Having derived an environment passing interpreter in version 0.0.1, the addition
of functions, specifically closures, becomes much more tractable.

So far the text has been pretty relaxed about the uses of the words function
and closure, which is ok because in PScheme all functions are in fact closures.
But before we go any further we’d better have a clearer definition of what a
closure is, and what the difference between a function and a closure might be.

First of all what precisely is a function? On consideration, functions are a lot
like let expressions: they both extend an environment then execute an expres-
sion in the extension. A let expression extends an environment with key-value
pairs, then evaluates its body in that new environment. A function extends
an environment by binding its formal arguments to its actual arguments9 then
evaluates its body in that new environment. For example, assuming the defini-
tion:

(define square (lambda (x) (* x x)))

then while executing the expression:

(square 4)

the global environment would be extended with a binding of x to 4, and the
body of the function, (* x x) would be evaluated in that new environment, as
in Figure 10.

Figure 10: Functions extend an environment

Env1

let
lambda
if
*
-
square

(square 4)

Env2

x 4

(* x x)

Now, a closure is simply a function that when executed will extend the environ-
ment that was current at the time the closure was created. Consider an example
we’ve seen before.

> (define times2
> (let ((n 2))

9Formal arguments are the names that a function gives to its variables. Actual arguments
are the values passed to a function.

51

> (lambda (x) (* n x))))
times2
> (times2 4)
8

The lambda expression is being executed in an environment where n is bound
to 2. The result of that lambda expression, a closure, is also the result of the
let expression and therefore gets bound to the symbol times2 in the global
environment.

Now when times2 is called, the closure body (* n x) must execute in an
environment where n is still bound to 2, as in Figure 11.

Figure 11: Closures extend the lexical environment

Env1

let
lambda
if
*
-
times2

Env2

n 2

(times2 4)

(* n x) Env3

x 4

A function which is not a closure would have to pick a different environment to
extend. It could choose the environment it is being executed in but that would
cause confusion, or it could extend the global environment. The latter choice
is the standard one for non-closure implementations, but as already noted all
functions in PScheme are closures (and there are no advantages to them not
being closures) so we don’t have to worry about that.

So we’re going to continue to use the words function and closure pretty
much interchangeably, but when we use the word function we’re emphasizing
the functional aspects of the object under discussion, and when we use the word
closure, we’re emphasizing its environmental behaviour.

When considering functions (closures) there are two parts to the story, the
first part is how lambda creates a function, and the second is how the function

52

gets evaluated when it is called. In the next section we’ll look at the first part,
how lambda creates a function.

6.1 ������

We need a good, simple example of closures in action. The following example
fits our purposes, but is a bit more complicated than the examples we’ve seen
so far:

> (let ((a 4)
> (times2
> (let ((n 2))
> (lambda (x) (* x n)))))
> (times2 a))
8

This example is just a little tricky, so in detail:

• The outer let binds a to 4 and times2 to the result of evaluating the
inner let, then evaluates (times2 a) in that new environment.

• The inner let binds n to 2 then evaluates the lambda expression.

• The value of that inner let is the result of evaluating the lambda expres-
sion, and that, a closure, is what gets bound to the symbol times2 by the
outer let.

• When (times2 a) is evaluated, the closure bound to times2 can still
“see” the value of n and so (* x n) produces the expected result (8).

Just to be absolutely sure that semantics of that expression are well understood,
here is an equivalent in Perl:

{
my $a = 4;
my $times2 = do {

my $n = 2;
sub {

my ($x) = @_;
$x * $n;

}
};
$times2->($a);

}

Now we’re going to walk through the execution of the PScheme statement in a
lot more detail, considering what the interpreter is actually doing to produce
the final result.

The very first thing that happens when evaluating our PScheme example is
that the outer let evaluates the number 4 in the global environment. It does
not yet bind that value to a, it first must evaluate the expression that will be
bound to times2.

53

> (let ((a +)
> (times2
> (let ((n 2))
> (lambda (x) (* x n)))))
> (times2 a))
8

The next thing that happens is the outer let initiates the evaluation of the
inner let. The inner let extends the global environment with a binding of n
to 2, as hilighted in the following code and shown in Figure 12.

> (let ((a 4)
> (times2
> ���� ��� ,��

> (lambda (x) (* x n))�))
> (times2 a))
8

Figure 12: let binds n to 2

Env1

let
lambda
if
*
-

Env2

n 2

(let ((n 2)) ...

creates

Then, in that new environment, labelled Env2, the let evaluates the lambda
expression:

> (let ((a 4)
> (times2
> (let ((n 2))
> ������� ��� �(� ���)))
> (times2 a))
8

Evaluating a lambda expression is just the same as evaluating any other list
expression, it’s (unevaluated) arguments are passed to its Apply() method,
along with the current environment. In our example the arguments to the
lambda’s Apply() would be:

1. A list of the unevaluated arguments containing

54

(a) the formal arguments to the function: (x)

(b) the body of the function: (* x n)

2. the current environment, Env2 that the let just created, with a binding
of n to 2.

To start to make this happen we first need to add a new subclass of PScm::
SpecialForm, rather unsurprisingly called PScm::SpecialForm::Lambda, and
we need to add a binding from the symbol lambda to an object of that class
in the initial environment. Firstly, here’s ReadEvalPrint() with the additional
binding:

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(
38 let => new PScm::SpecialForm::Let(),
39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 ������ !� ��% ����������
��&����������()$
43)
44);
45 $result->Print($outfh);
46 }
47 }

The only change is the addition of line 42 with the new binding for lambda.
Now we can look at that new package PScm::SpecialForm::Lambda. All it’s

Apply() method has to do is to store the details of the function definition and
the current environment in another new type of object representing the closure:

46 package PScm::SpecialForm::Lambda;
47

48 use base qw(PScm::SpecialForm);
49 use PScm::Closure;
50

51 sub Apply {
52 my ($self, $form, $env) = @_;
53

54 my ($args, $body) = $form->value;
55 return PScm::Closure::Function->new($args, $body, $env);
56 }
57

58 1;

55

At line 54 it unpacks the formal arguments (i.e. (x)) and body ((* x n))
of its argument $form (the arguments to the lambda expression) and on line
55 it returns a new PScm::Closure::Function object containing those values
and, most importantly, also containing the current environment (Env2 in our
example.)

That new() method (actually in PScm::Closure::Function’s parent class
PScm::Closure) does no more than bundle its arguments:

07 sub new {
08 my ($class, $args, $body, $env) = @_;
09

10 bless {
11 args => $args,
12 body => $body,
13 env => $env,
14 }, $class;
15 }

So in our example it is Env2 that is captured, along with the arguments and
body of the function, in the resulting closure. This is shown in Figure 13.

Figure 13: Closure Captures the Local Environment

Env1

let
lambda
if
*
-

Env2

n 2

(lambda (x) (* x n))

Closure

args (x)
body (* x n)
env

(let ((n 2) ...

creates

creates

As we’ve noted, the value of the inner let expression is that new Closure object,
and next the outer let recieves the value of the inner let, and extends the global
environment with a binding of times2 to that. It also binds a to 4:

> (let ((� 4)
> (�
���,
> (let ((n 2))
> (lambda (x) (* x n)))))
> (times2 a))
8

56

Figure 14: let binds times2

Env1

let
lambda
if
*
-

Env2

n 2

(lambda (x) (* x n))

Closure

args (x)
body (* x n)
env

Env3

a 4
times2

(let ((a 4)
 (times2 ...

creates

(let ((n 2) ...

creates

creates

The resulting environment is labelled Env3 in Figure 14.
Now at this point the only thing hanging on to the old Env2, where n has a
value, is that Closure, and the only thing hanging on to the Closure is the
binding for times2 in Env3 (the code for the Apply() method of the outer let
is currently holding on to Env3.)

Having created Env3, the outer let evaluates its body, (times2 a) in that
environment.

> (let ((a 4)
> (times2
> (let ((n 2))
> (lambda (x) (* x n)))))
> ��
���, ��)
8

That brings us to the second part of our story, how a function (a closure) gets
evaluated.

6.2 Closure

To recap, we’ve reached the stage where the subexpression (times2 a) is about
to be evaluated. It will be evaluated in the context of Env3 from Figure 14 which
the outer let has just set up with a binding of a to 2 and times2 to the closure.

Since (times2 a) is a list, the Eval() method for lists comes in to play
again. It evaluates the first component of the list, the symbol times2, in the
context of Env3 resulting in the Closure. Then it passes the rest of the form (a
list containing the symbol a) unevaluated, along with the current environment
Env3, to the closure’s Apply() method. Closures, being operations, have to
have an Apply() method, and here it is:

57

29 package PScm::Closure::Function;
30

31 use base qw(PScm::Closure);
32

33 sub Apply {
34 my ($self, $form, $env) = @_;
35

36 my @evaluated_args = map { $_->Eval($env) } $form->value;
37 return $self->_apply(@evaluated_args);
38 }
39

40 1;

First of all, on line 36 it evaluates each component of the form (each argument
to the function) with map, passing the argument $env (Env3) to each call to
Eval(). After all, closures are functions, and functions take their arguments
evaluated.

At line 37 our closure’s Apply() returns the result of calling a separate -
apply() method on those evaluated arguments, much as primitive operations
do. Note particularily that it does not pass its argument $env to the private
apply() method.

The private apply() method is in the parent PScm::Closure class10:

21 sub _apply {
22 my ($self, @args) = @_;
23

24 my $extended_env = $self->env->ExtendUnevaluated([$self->args], [@args]);
25 return $self->body->Eval($extended_env);
26 }

This apply() method does not need an argument environment because the
correct environment to extend is the one that was current when the closure
was created, and that was captured as part of the closure object. On line
24 It extends that environment with bindings from its formal arguments, also
collected when the closure was created (i.e. x,) to the actual arguments it was
passed (i.e. 4, already evaluated, hence the call to ExtendUnevaluated()which
we’ll look at presently.) Then it evaluates its body (the of the function) passing
that extended environment as argument and returns the result (line 25).

Returning to our example, we’re still considering the evaluation of the subex-
pression (times2 a). As we’ve said the closure’s Apply() method evaluates its
argument a in the environment it was passed, Env3, resulting in 4. But it is
the captured environment, Env2, that the closure extends with a binding of x
to 4, resulting in Env4 (Figure 15). It is in Env4, with x bound to 4 and n still
bound to 2, that the closure executes the body of the function (* x n).
Figure 15 pretty much tells the whole story. Here’s our example one last time
so it can be walked through referring to the figure:

10Why? Because a later version of the interpreter will support more than one type of
closure.

58

Figure 15: Closure Extends Captured Env

Env1

let
lambda
if
*
-

Env2

n 2

(lambda (x) (* x n))

Closure

args (x)
body (* x n)
env

Env3

a 4
times2

(let ((n 2) ...

(times2 a)

Env4

x 4

(* x n)

(let ((a 4)
 (times2 ...

creates

creates

creates

creates

(1)

(2)

(5)

(3)

(4)

(let ((a 4)
(times2

(let ((n 2))
(lambda (x) (* x n)))))

(times2 a))

• At (1) in the figure, the inner let extends the global env Env1 with a
binding of n to 2 producing Env2.

• At (2) the inner let then evaluates the lambda expression in the context
of Env2, creating a Closure that captures Env2.

• At (3), the outer let extends the global environment Env1 with bindings
of a to 4 and times2 to the value of the inner let, the Closure.

• At (4) the outer let evaluates the subexpression (times2 a) in the con-
text of Env3. In this environment times2 evaluates to the closure, and
its Apply() evaluates a in the same environment Env3 where it evaluates
to 4.

• Finally, at (5), the closure extends the originally captured environment
Env2 with a binding of x to 4 producing Env4 and evaluates its body, (*
x n), in this environment.

That just leaves a couple of loose ends to tidy up. If you remember, the
Extend() method in PScm::Env evaluates the values it is passed, and since

59

the arguments to apply in PScm::Closure are already evaluated, apply()
needed to call a variant of Extend(), namely ExtendUnevaluated(). Here’s
that method:

24 sub ExtendUnevaluated {
25 my ($self, $ra_symbols, $ra_values) = @_;
26

27 my %newbindings;
28 @newbindings{ map { $_->value } @$ra_symbols } = @$ra_values;
29 my $newenv = $self->new(%newbindings);
30 $newenv->{parent} = $self;
31 return $newenv;
32 }
You can see that it does pretty much exactly what the old Extend() did, except
that it doesn’t call Eval() on the values. In fact Extend() can now be re-written
and simplified to use it:

17 sub Extend {
18 my ($self, $ra_symbols, $ra_values) = @_;
19

20 ������ ����	->������������������$ra_symbols$
21 - map { $_->Eval($self) } @$ra_values .�;
�� }

6.3 Summary

Hopefully the power, flexibility and elegance of an environment-passing inter-
preter combined with a linked-list environment implementation is becoming
apparent. The enormous advantage over a stack discipline is that individual en-
vironments need not go away just because a particular construct returns. They
can hang around as long as they are needed and garbage collection will remove
them when the time comes. Without further ado then, here’s the full source for
our new PScm::Closure package in Listing 11.

6.4 Tests

Here’s the additions to PScm.t for the interpreter version 0.0.2.
We have added three more tests since the previous version. The first new test,
starting on line 48, tests the simple creation of a lambda expression, its binding
to a symbol, and its application to arguments. The second addition starting
on line 54 just exercises pretty much exactly the example we’ve been working
through. The third addition starting on line 61 starts to flex the muscles of our
nascent interpreter a little more. It creates a local makemultiplier function that
when called with an argument n will return another function that will multiply
n by its argument. It then binds the result of calling (makemultiplier 3) to
times3 and calls (times3 5), confirming that the result is 15, as expected.

We could rewrite the body of that last test in Perl as follows:

{
my $times3 = do {

60

01 package PScm::Closure;
02

03 use strict;
04 use warnings;
05 use base qw(PScm);
06

07 sub new {
08 my ($class, $args, $body, $env) = @_;
09

10 bless {
11 args => $args,
12 body => $body,
13 env => $env,
14 }, $class;
15 }
16

17 sub args { $_[0]->{args}->value }
18 sub body { $_[0]->{body} }
19 sub env { $_[0]->{env} }
20

21 sub _apply {
22 my ($self, @args) = @_;
23

24 my $extended_env = $self->env->ExtendUnevaluated([$self->args], [@args]);
25 return $self->body->Eval($extended_env);
26 }
27

28 ################################
29 package PScm::Closure::Function;
30

31 use base qw(PScm::Closure);
32

33 sub Apply {
34 my ($self, $form, $env) = @_;
35

36 my @evaluated_args = map { $_->Eval($env) } $form->value;
37 return $self->_apply(@evaluated_args);
38 }
39

40 1;

listing 11: PScm/Closure.pm

61

01 use strict;
02 use warnings;
03 use Test::More tests => 14;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) }
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22

23 # warn "# [$res]\n";
24 return $res;
25 }
26

27 ok(evaluate(’1’) eq ’1’, ’numbers’);
28 ok(evaluate(’+1’) eq ’1’, ’positive numbers’);
29 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
30

31 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
32

33 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
34 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
35 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
36

37 ok(evaluate(’(let ((x 2)) x)’) eq ’2’, ’simple let’);
38

39 ok(evaluate(’(if 0 10 20)’) eq ’20’, ’simple conditional’);
40

41 ok(evaluate(<<EOF) eq ’20’, ’conditional evaluation’);
42 (let ((a 00)
43 (b 10)
44 (c 20))
45 (if a b c))

listing 12: t/PScm.t

62

46 EOF
47

48 ok(evaluate(<<EOF) eq ’16’, ’lambda’);
49 (let ((square
50 (lambda (x) (* x x))))
51 (square 4))
52 EOF
53

54 ok(evaluate(<<EOF) eq ’12’, ’closure’);
55 (let ((times3
56 (let ((n 3))
57 (lambda (x) (* n x)))))
58 (times3 4))
59 EOF
60

61 ok(evaluate(<<EOF) eq ’15’, ’higher order functions’);
62 (let ((times3
63 (let ((makemultiplier
64 (lambda (n)
65 (lambda (x) (* n x)))))
66 (makemultiplier 3))))
67 (times3 5))
68 EOF
69

70 # vim: ft=perl

listing 12: t/PScm.t (Cont.)

my $makemultiplier = sub {
my ($n) = @_;
return sub {

my ($x) = @_;
return $n * $x;

}
};
$makemultiplier->(3);

};
$times3->(5);

}

63

7 Interpreter Version 0.0.3—Recursion and ������

Let’s try a little experiment with the interpreter version 0.0.2. We’ll try to use
let to define a recursive function, the perennial factorial function11.

> (let ((factorial
> (lambda (n)
> (if n
> (* n (factorial (- n 1)))
> 1))))
> (factorial 3))
����� � �
��
�� 	� 	����
��
� ���������

It didn’t work. The reason that it didn’t work is obvious, considering how let
works.

let evaluates its bindings in the enclosing environment, so it is the enclosing
environment (the global environment in this case) that the lambda captures.
Now that environment doesn’t have a binding for factorial so any recursive
call to factorial from the body of the function (closure) is bound to fail.

let will create a binding for factorial, but only by extending the global
environment after the lambda expression has been evaluated.

So the error is not coming from the call to (factorial 3), it’s coming from
the attempted recursive call to (factorial (- n 1)) inside the body of the
factorial definition. The environment diagram in Figure 16 should help to
make that clear.

Figure 16: Why recursion doesn’t work

Env1

Env3

n 3

Env2

factorial

Closure

args n
body (if n ...
env

(1)

(2)(3)

(let ((factorial
(lambda (n) ..

(factorial (- n 1)) (factorial 3)

The let evaluates the lambda expression in the initial environment, Env1 at
(1), so that’s the environment that gets captured by the Closure. Then the let
binds the closure to the symbol factorial in an extended environment Env2,
and that’s where the body of the let, (factorial 3), gets evaluated at (2).
Now after evaluating its argument 3 in Env2, the closure proceeds to extend

11Factorial(n), often written n!, is n × (n − 1) × (n − 2) × · · · × 1.

64

the environment it captured, the global environment Env1, with a binding of n
to 3 producing Env3. It’s in Env3 that the body of the factorial function gets
evaluated at (3). Now n has a binding in that environment, but unfortunately
factorial doesn’t, so the recursive call fails.

7.1 ������

What we need is a variation of let that arranges to evaluate the values for its
bindings in an environment where the bindings are already in place. Essentially
the environments would appear as in Figure 17.

Figure 17: Recursive environments

Env1

Env3

n 3

Closure

args n
body (if n ...
env

Env2

factorial

(factorial (- n 1))

(factorial 3)

(let ((factorial
(lambda (n) ..

In this figure the closure has been persuaded to capture an environment Env2
containing a binding that refers back to the closure itself (a circular reference
in effect.) In this circumstance any recursive call to factorial from the body
of the closure would work because the closure would have extended Env2 and
its body would execute in a context (Env3) where factorial did have a value.

The special form we’re looking for is called letrec (short for “let recursive”)
and it isn’t too tricky, although a bit of a hack. Let’s first remind ourselves how
let works.

1. Evaluate the values in the current, passed in environment;

2. Create a new environment as an extension of the current one, with those
values bound to their symbols;

3. Evaluate the body of the let in that new environment.

Our variant, letrec, isn’t all that different. What it does is:

1. Create a new extended environment first, with dummy values bound to
the symbols;

2. Evaluate the values in that new environment;

3. Assign the values to their symbols in that new environment;

65

4. Evaluate the body in that new environment.

Obviously if any of the values in a letrec are expressions other than lambda
expressions, and they make reference to other letrec values in the same scope,
then there will be problems. Remember that all lambda does is to capture
the current environment along with formal arguments and function body. It
does not immediately evaluate anything in that captured environment. For that
reason real letrec implementations may typically only allow lambda expressions
as values. PScheme doesn’t bother making that check, simply to keep the code
as concise as possible12.

7.2 Assignment

To implement letrec then, we first need to add a method to the environment
class PScm::Env that will allow assignment to existing bindings. Here is that
method.

59 sub Assign {
60 my ($self, $symbol, $value) = @_;
61

62 if (defined(my $ref = $self->_lookup_ref($symbol))) {
63 $$ref = $value;
64 } else {
65 die "no binding for @{[$symbol->value]}",
66 " in @{[ref($self)]}\n";
67 }
68 }
Assign() uses a helper function lookup ref() to actually do the symbol
lookup. If lookup ref() finds a binding, then Assign() puts the new val-
ue in place through the reference that lookup ref() returns. It is an error
if there’s not currently such a symbol in the environment. This makes sense
because it keeps the distinction between variable binding and assignment clear:
variable binding creates a new binding; assignment changes an existing one.

lookup ref() is simple enough, it does pretty much what LookUp() does,
except it returns a reference to what it finds, and returns undef, rather than
die()-ing if it doesn’t find a value:

70 sub _lookup_ref {
71 my ($self, $symbol) = @_;
72

73 if (exists($self->{bindings}{ $symbol->value })) {
74 return \$self->{bindings}{ $symbol->value };
75 } elsif ($self->{parent}) {
76 return $self->{parent}->_lookup_ref($symbol);
77 } else {
78 return undef;
79 }
80 }

12One possible way to detect this type of error would be to bind dummy objects to the
symbols. These dummy objects would have an Eval() method that would die() with an
informative error message if it was ever called.

66

Incidentally, LookUp() itself has been modified (and simplified) to make use of
it.

48 sub LookUp {
49 my ($self, $symbol) = @_;
50

51
	 ���	
������ ���	 ! ����	��/����/��	���������� {
52 ������ ����	

53 } ���� {
54 �
� 0� �
��
�� 	� 1{-�������������.}0$
55 0
� 1{-��	�����	�.}\�0
56 }
�� }
All that remains to be done is to add a LetRec subclass of PScm::SpecialForm
with an Apply() method that implements the algorithm we’ve discussed, then
add a binding in the initial environment from “letrec” to an instance of that
class.

We can simplify things a bit by subclassing PScm::SpecialForm::Let in-
stead of PScm::SpecialForm, and factoring common code out of PScm::SpecialForm::
Let’s Apply() method into a new UnPack method in that class. So first here’s
the new version of PScm::SpecialForm::Let::Apply()

12 sub Apply {
13 my ($self, $form, $env) = @_;
14

15 �� ����/������$ ���/������$ ����� ! ����	����������	���

16

17 ������ ���������������������������/������$ ���/��������

�� }
The common code in PScm::SpecialForm::Let::UnPack() just unpacks the
symbols, bindings and body from the argument $form and returns them:

20 sub UnPack {
21 my ($self, $form) = @_;
22

23 my ($bindings, $body) = $form->value;
24 my (@symbols, @values);
25

26 foreach my $binding ($bindings->value) {
27 my ($symbol, $value) = $binding->value;
28 push @symbols, $symbol;
29 push @values, $value;
30 }
31

32 return (\@symbols, \@values, $body);
33 }
Now, our new Apply() in PScm::SpecialForm::LetRec makes use of that
same UnPack() method (by inheriting from PScm::SpecialForm::Let). It dif-
fers from the original Apply() only in that it calls the environment’s Extend-
Recursively() method, rather than Extend().

67

36 package PScm::SpecialForm::LetRec;
37

38 use base qw(PScm::SpecialForm::Let);
39

40 sub Apply {
41 my ($self, $form, $env) = @_;
42

43 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form);
44

45 return $body->Eval($env->ExtendRecursively($ra_symbols, $ra_values));
46 }
47

48 ##############################

So we need to take a look at that ExtendRecursively()method in PScm::Env.

34 sub ExtendRecursively {
35 my ($self, $ra_symbols, $ra_values) = @_;
36

37 my $newenv = $self->ExtendUnevaluated($ra_symbols, $ra_values);
38 $newenv->_eval_values();
39 return $newenv;
40 }

It creates a new environment by extending the current environment, $self with
the symbols bound to their unevaluated values. Then it calls a new, private
method eval values() on the new environment. Here’s that method:

42 sub _eval_values {
43 my ($self) = @_;
44 map { $self->{bindings}{$_} = $self->{bindings}{$_}->Eval($self) }
45 keys %{$self->{bindings}};
46 }

All that does is to loop over all of its bindings, replacing the unevaluated ex-
pression with the result of evaluating the expression in the current environment.
Since all of those expressions are expected to be lambda expressions, the result-
ing closures capture the environment that they are themselves bound in. QED.

A careful reader may have realised that a valid alternative implementation
of letrec would just create an empty environment extension, then populate the
environment afterwards with an alternative version of Assign() which did not
require the symbols to pre-exist in the environment. The main reason it is not
done that way is that the current behaviour of Assign() is more appropriate
for later extensions to the interpreter.

Just to be complete, here’s the new version of PScm::ReadEvalPrint()with
the binding for letrec.

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

68

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(
38 let => new PScm::SpecialForm::Let(),
39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 lambda => new PScm::SpecialForm::Lambda(),
43 ������ !� ��% ����������
��&�������2��()$
44)
45);
46 $result->Print($outfh);
47 }
48 }

7.3 Summary

Let evaluates the values of its bindings in the enclosing environment. Then
it creates an extended environment in which to evaluate the body of the let
expression. This means that recursive lambda expressions defined by let won’t
work, because there’s no binding for the recursive function when the lambda
expression is evaluated. In order to get recursion to work, we needed to create
a variant of let, called letrec (let recursive) which sets up a dummy environ-
ment with stub values for the symbols in which to evaluate the lambda expres-
sions, so that the lambda expressions could capture that environment in their
resulting closures. Having evaluated those expressions, letrec assigns their
values to the existing bindings in the new environment, replacing the dummy
values. Thus when the closure executes later, the environment it has captured,
and which it will extend with its formal arguments bound to actual values, will
contain a reference to the closure itself, so a recursive call is successful.

7.4 Tests

Here’s the additions to PScm.t for version 0.0.3 of the interpreter.
There are three new tests since 0.0.2, the first two, starting at line 70 just prove
what we already know, that let does not (and should not) support recursion.
The other new test starting at line 80 replaces let with letrec and proves that
letrec on the other hand does support recursive function definitions.

69

01 use strict;
02 use warnings;
03 use Test::More tests => 17;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) }
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22

23 # warn "# [$res]\n";
24 return $res;
25 }
26

27 ok(evaluate(’1’) eq ’1’, ’numbers’);
28 ok(evaluate(’+1’) eq ’1’, ’positive numbers’);
29 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
30

31 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
32

33 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
34 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
35 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
36

37 ok(evaluate(’(let ((x 2)) x)’) eq ’2’, ’simple let’);
38

39 ok(evaluate(’(if 0 10 20)’) eq ’20’, ’simple conditional’);
40

41 ok(evaluate(<<EOF) eq ’20’, ’conditional evaluation’);
42 (let ((a 00)
43 (b 10)
44 (c 20))
45 (if a b c))

listing 13: t/PScm.t

70

46 EOF
47

48 ok(evaluate(<<EOF) eq ’16’, ’lambda’);
49 (let ((square
50 (lambda (x) (* x x))))
51 (square 4))
52 EOF
53

54 ok(evaluate(<<EOF) eq ’12’, ’closure’);
55 (let ((times3
56 (let ((n 3))
57 (lambda (x) (* n x)))))
58 (times3 4))
59 EOF
60

61 ok(evaluate(<<EOF) eq ’15’, ’higher order functions’);
62 (let ((times3
63 (let ((makemultiplier
64 (lambda (n)
65 (lambda (x) (* n x)))))
66 (makemultiplier 3))))
67 (times3 5))
68 EOF
69

70 ok(!defined(eval { evaluate(<<EOF) }), ’let does not support recursion’);
71 (let ((factorial
72 (lambda (n)
73 (if n (* n (factorial (- n 1)))
74 1))))
75 (factorial 4))
76 EOF
77

78 ok($@ eq "no binding for factorial in PScm::Env\n", ’let does not support recursion [2]’);
79

80 ok(evaluate(<<EOF) eq "24", ’letrec and recursion’);
81 (letrec ((factorial
82 (lambda (n)
83 (if n (* n (factorial (- n 1)))
84 1))))
85 (factorial 4))
86 EOF
87

88 # vim: ft=perl

listing 13: t/PScm.t (Cont.)

71

8 Interpreter Version 0.0.4—Another Variation

on ���

Suppose we have a fairly complicated calculation to make. We’d like to compute
intermediate values in order to simplify our code. For example:

> (let ((a 5)
> (b (* a 2))
> (c (- b 3)))
> c)
����� � �
��
�� 	� �
� ���������

It didn’t work. The error occurs when attempting to evaluate (* a 2). Why?
Well in much the same way as let fails for recursive definitions: because let
binds its arguments in parallel, at the point that it is trying to evaluate (* a
2), it is still doing so in the environment prior to binding a.

letrec can’t help here, because it sets up an environment with dummy
values to evaluate its values in, which is OK if those values are closures that
just capture that environment for later, but very bad if they’re actually going
to try to do any immediate evaluations with those dummy values.

8.1 Sequential Binding

Of course the solution is quite simple even using our existing let form: we
just nest the let expressions so that each value expression gets evaluated in an
environment where the previous value is already bound to its symbol:

> (let ((a 5))
> (let ((b (* a 2)))
> (let ((c (- b 3)))
> c)))
7

That would give us a set of environments as in Figure 18.
The outer let binds a to 5 to create Env2. The next let evaluates (* a 2) in
the context of Env2 and creates Env3 with a binding of b to the result 10. The
innermost let evaluates (- b 3) in Env3 and binds c to the result, creating
Env4. In Env4 the final evaluation of c results in 7, which is the result of the
expression.

While that works fine, it’s rather ugly and verbose code. Wouldn’t it be
better if there was a variant of let that did all that for us, binding its variables
sequentially? This variant of let is called let* (let-star) and is found in most
lisp implementations.

8.2 ���	

To implement let*, in the same way as we implemented letrec, we create a
new sub-class of PScm::SpecialForm::Let and give it an Apply()method, then
bind a symbol (let*) to an instance of that class in the initial environment. Our
new class will be called PScm::SpecialForm::LetStar and here’s that Apply()
method.

72

Figure 18: Nested environments

Env1

Env4

c 7

Env3

b 10

Env2

a 5

c

(let ((c (- b 3)) ..

(let ((b (* a 2))) ..

(let ((a 5)) ..

creates

creates

creates

49 package PScm::SpecialForm::LetStar;
50

51 use base qw(PScm::SpecialForm::Let);
52

53 sub Apply {
54 my ($self, $form, $env) = @_;
55

56 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form);
57

58 return $body->Eval($env->ExtendIteratively($ra_symbols, $ra_values));
59 }
60

61 ##############################

Again it only differs from the let and letrec implementations of Apply() in
the way it extends the environment it passes to the Eval() of its body. In this
case it calls the new PScm::Env method ExtendIteratively().

42 sub ExtendIteratively {
43 my ($self, $ra_symbols, $ra_values) = @_;
44

45 my @symbols = @$ra_symbols;
46 my @values = @$ra_values;
47 my $newenv = $self;
48

49 while (@symbols) {
50 my $symbol = shift @symbols;
51 my $value = shift @values;
52 $newenv = $newenv->Extend([$symbol], [$value]);

73

53 }
54

55 return $newenv;
56 }
This method implements the algorithm we discussed earlier, creating a new
environment frame for each individual binding, and evaluating the value part
in the context of the previous environment frame. The last environment frame,
the head of the list of frames rooted in the original environment, is returned by
the method13.

8.3 Summary

This may all seem a bit academic, but let’s remember that Perl supports both
types of variable binding, let and let*, in the following way.

Parallel assignment is done in a list context:

my ($a2, $b2) = ($a * $a, $b * $b);

Sequential binding is done by sequential assignment:

my $a = 5;
my $b = $a * 2;
my $c = $b - 3;

let has its uses, just as assignment in a list context does. For instance with
parallel assignment it becomes possible to swap the values of variables without
needing an additional temporary variable. In Perl:

($b, $a) = ($a, $b);
...

and in PScheme:

(let ((a b)
(b a))

...)

Again, just for completeness, here’s our 0.0.4 version of ReadEvalPrint() with
the additional let* binding.

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(
38 let => new PScm::SpecialForm::Let(),

13An alternative implementation would be to only create one new environment frame, then
iteratively evaluate and bind each value in turn, in the context of that new environment.

74

39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 lambda => new PScm::SpecialForm::Lambda(),
43 letrec => new PScm::SpecialForm::LetRec(),
44 '���(' !� ��% ����������
��&�����������()$
45)
46);
47 $result->Print($outfh);
48 }
49 }

8.4 Tests

The additional tests for 0.0.4 are here.
The first new test, lines 88-94, proves that ordinary let binds in parallel, by
doing the variable swapping trick. The second new test, lines 96-101, demon-
strates let* binding sequentially since the innermost binding of b to a sees the
immediately previous binding of a to the outer b.

75

01 use strict;
02 use warnings;
03 use Test::More tests => 19;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) }
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22

23 # warn "# [$res]\n";
24 return $res;
25 }
26

27 ok(evaluate(’1’) eq ’1’, ’numbers’);
28 ok(evaluate(’+1’) eq ’1’, ’positive numbers’);
29 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
30

31 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
32

33 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
34 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
35 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
36

37 ok(evaluate(’(let ((x 2)) x)’) eq ’2’, ’simple let’);
38

39 ok(evaluate(’(if 0 10 20)’) eq ’20’, ’simple conditional’);
40

41 ok(evaluate(<<EOF) eq ’20’, ’conditional evaluation’);
42 (let ((a 00)
43 (b 10)
44 (c 20))
45 (if a b c))

listing 14: t/PScm.t

76

46 EOF
47

48 ok(evaluate(<<EOF) eq ’16’, ’lambda’);
49 (let ((square
50 (lambda (x) (* x x))))
51 (square 4))
52 EOF
53

54 ok(evaluate(<<EOF) eq ’12’, ’closure’);
55 (let ((times3
56 (let ((n 3))
57 (lambda (x) (* n x)))))
58 (times3 4))
59 EOF
60

61 ok(evaluate(<<EOF) eq ’15’, ’higher order functions’);
62 (let ((times3
63 (let ((makemultiplier
64 (lambda (n)
65 (lambda (x) (* n x)))))
66 (makemultiplier 3))))
67 (times3 5))
68 EOF
69

70 ok(!defined(eval { evaluate(<<EOF) }), ’let does not support recursion’);
71 (let ((factorial
72 (lambda (n)
73 (if n (* n (factorial (- n 1)))
74 1))))
75 (factorial 4))
76 EOF
77

78 ok($@ eq "no binding for factorial in PScm::Env\n", ’let does not support recursion [2]’);
79

80 ok(evaluate(<<EOF) eq "24", ’letrec and recursion’);
81 (letrec ((factorial
82 (lambda (n)
83 (if n (* n (factorial (- n 1)))
84 1))))
85 (factorial 4))
86 EOF
87

88 ok(evaluate(<<EOF) eq ’1’, ’let binds in parallel’);
89 (let ((a 1)

listing 14: t/PScm.t (Cont.)

77

90 (b 2))
91 (let ((a b)
92 (b a))
93 b))
94 EOF
95

96 ok(evaluate(<<EOF) eq ’2’, ’let* binds sequentially’);
97 (let ((a 1)
98 (b 2))
99 (let* ((a b)
100 (b a))
101 b))
102 EOF
103

104 # vim: ft=perl

listing 14: t/PScm.t (Cont.)

78

9 Interpreter Version 0.0.5—List Processing

It was mentioned in the introduction to this chapter that one of the great
strengths of the Lisp family of languages is their ability to treat programs as
data: to manipulate the same list structures that their expressions are com-
posed of. So far we haven’t seen any of that functionality implemented in our
interpreter.

Those list structures are the ones constructed by the Reader, and the Reader
can be considered a general purpose data input package: all it does is categorize
and collect input into strings, numbers, symbols and lists. That’s a very useful
structure for organizing any kind of information, not just PScheme programs.
The read-eval-print loop will, however, attempt to evaluate any such structure
read in, so we need a way of stopping that.

9.1
����

The appropriate form is called quote and is a PScm::SpecialForm. It takes a
single argument and returns it unevaluated:

> (quote a)
a
> (quote (+ 1 2))
(+ 1 2)

The implementation is rather trivial: Quote is used to turn off evaluation.
Since special forms don’t have their arguments evaluated for them, all that
the Apply() method in PScm::SpecialForm::Quote need do is to return its
first argument, still unevaluated.

Here’s PScm::SpecialForm::Quote.

93 package PScm::SpecialForm::Quote;
94

95 use base qw(PScm::SpecialForm);
96

97 sub Apply {
98 my ($self, $form, $env) = @_;
99 return $form->first;
100 }
101

102 1;

9.2 ���

Another useful operation is called list. It takes a list of arguments and con-
structs a new list from them. It is just a PScm::Primitive and so it’s arguments
are evaluated:

> (list (- 8 1) "hello")
(7 "hello")

79

It does nothing itself but return the list of its evaluated arguments to the caller
as a new PScm::Expr::List, so it’s also trivial to implement. To recap, all
PScm::Primitive classes share a common Apply() method that evaluates the
arguments then calls the class-specific apply() method. So all we have to do
is to subclass PScm::Primitive to PScm::Primitive::List and give that new
subclass an appropriate apply() method.

68 package PScm::Primitive::List;
69

70 use base qw(PScm::Primitive);
71

72 sub _apply {
73 my ($self, @args) = @_;
74

75 return new PScm::Expr::List(@args);
76 }
77

78 #############################

As has been said, it’s trivial because it just returns its arguments as a new
PScm::Expr::List.

9.3 ��� and ���

So we can create lists, but what can we do with them? We already have two
primitive internal operations on lists, namely the PScm::Expr::List::first()
and rest() methods. They are something like the complement of the list
primitive in that they take apart a list into its components. Bowing to historical
precedent however, Scheme, and hence PScheme, doesn’t call them “first” and
“rest”, instead they are called car and cdr14.

Again their implementation is simple, we add a new subclass of PScm::
Primitive for each of them, and give each new class an apply() method that
calls the relevant internal method. Here’s PScm::Primitive::Car.

79 package PScm::Primitive::Car;
80

81 use base qw(PScm::Primitive);
82

83 sub _apply {
84 my ($self, $arg) = @_;
85

86 $self->_check_type($arg, ’PScm::Expr::List’);
87 return $arg->first;
88 }
89

90 #############################
14Obligatory footnote. CAR stands for “the Contents of the Address part of the Register”

and CDR stands for “the Contents of the Decrement part of the Register.” This is a reference
to the original hardware on which the first Lisp system was implemented, and means nothing
now but the names have stuck.

80

It uses check type() to verify that its argument is a list, then calls its first()
method, returning the result.

Here’s the equivalent PScm::Primitive::Cdr class.

91 package PScm::Primitive::Cdr;
92

93 use base qw(PScm::Primitive);
94

95 sub _apply {
96 my ($self, $arg) = @_;
97

98 $self->_check_type($arg, ’PScm::Expr::List’);
99 return $arg->rest;
100 }
101

102 ##############################

9.4 ����

We’re only missing one piece from our set of basic list operations now, but before
adding that it is necessary to explain a significant deviation that PScheme has
so far made from other Lisp and Scheme implementations. In our PScheme
implementation lists have so far been implemented as object wrappers around
Perl lists. This has the advantage that the implementation is as simple as can
be. However real Lisp systems implement lists as chains of what are called cons
cells. A cons cell is a structure with two components, both references to other
data types. For a true list, the first component points at the current list element
and the second component points at the rest of the list. The first component
is called the car and the second component the cdr, hence the eponymous
functions that access those components. So for example the lisp expression
(foo ("bar" 10)) Is not normally implemented as in Figure 1, but as shown
in Figure 19.
This means that a true Lisp list is in fact a linked list. A primary advantage
of this is that the internal first() and rest() (car and cdr) operations are
equally efficient: there is no need for rest() to construct a new list object. A
second advantage is that cons cells are more flexible than lists. A true list is
a chain of cons cells linked by their cdr component, ending in a cons cell with
an empty cdr. In general the cdr need not point to another cons cell, it could
equally well point to any other data type.

Let’s make the change to use that alternative implementation. Since the
PScm::Expr::List class hides its internal structure and provides accessor meth-
ods, that should be the only package that needs to change. Here’s the new
implementation:

26 package PScm::Expr::List;
27 use base qw(PScm::Expr);
28

29 sub new {

81

Figure 19: Cons Cell Representation of a nested list

Cell

Cell

Cell

Cell

car

cdr

cdr

String NumberSymbol

foo "bar" 10

car

car

car

30 my ($class, @list) = @_;
31

32 $class = ref($class) || $class;
33
	 �@list� {
34 �� �	
��� ! �3
	� 1�
��

35 ��������4����	
���, $class����%�1�
����;
36 } ���� {
37 ��% �������������
����5���()
38 }
39 }
40

41 sub value {
42 �� �����	� ! 1/

43 �� 1����� ! �����	��	
���$ ����	��������������

44 ������ 1�����

45 }
46

47 sub first {
48 $_[0]��{	
���}
49 }
50

51 sub rest {
52 �/-#.->{����};
53 }
54

55 sub as_string {
56 my ($self) = @_;
57 return ’(’ . join(’ ’, map { $_->as_string } $self->value) . ’)’;
58 }

82

59

60 sub Eval {
61 my ($self, $env) = @_;
62 my $op = $self->first()->Eval($env);
63 return $op->Apply($self->rest, $env);
64 }
65

66 sub Cons {
67 my ($class, $first, $rest) = @_;
68 bless {
69 first => $first,
70 rest => $rest,
71 }, $class;
72 }
73

74 ###############################

The new() method on lines 29-39 is a little more complicated than it was,
because it has to recurse on its argument list building a linked list. If the list is
not empty then on line 35 it calls an ancilliary method Cons() (defined on lines
66-72) to actually construct a new PScm::Expr::List node (a cons cell). The
empty list is represented by a new class PScm::Expr::List::Null which gets
tagged on to the end of the newly constructed list.

if you remember the old implementation just wrapped its argument list:

29 sub new {
30 my ($class, @list) = @_;
31

32 $class = ref($class) || $class;
33 bless [@list], $class;
34 }
The other methods are fairly straightforward.

• The value() method on lines 41-45 converts the linked list back into a
Perl list15.

• The first() and rest() are simplified, they are now just accessors to
the equivalent fields.

• The as string() and Eval() methods are in fact unchanged from the
previous implementations, as they rely entirely on the accessor methods.

• The new Cons() method abstracts the creation of a single cons cell, and
will be used by our nascent cons primitive as well as by new() above.

15The reason for the temporary @value variable is not redundant clarification of the code,
it is a workaround for a rather obscure piece of Perl behaviour. If the code had simply said:

return (self− > first,self->rest->value);

Then the scalar context imposed by the isTrue method in PScm::Expr would cause Perl to
apply the comma operator, throwing away the left hand side and returning only the right,
recursively, so all lists would end up being treated as false.

83

The other part of our alternative implementation of lists is that new PScm::
Expr::List::Null class. It represents the PScheme empty list, and quite rea-
sonably descends from the list class. It provides a simple new() method with
no arguments, and overrides the value() method to just return an empty perl
list.

75 package PScm::Expr::List::Null;
76 use base qw(PScm::Expr::List);
77

78 sub new {
79 my ($class) = @_;
80

81 $class = ref($class) || $class;
82 bless {}, $class;
83 }
84

85 sub value { (); }
86

87 sub first { $_[0] }
88

89 sub rest { $_[0] }
90

91 sub Eval { $_[0] }
92

93 ############################

Interestingly, it also overrides first() and rest() to return $self, so the car
or cdr of the empty list is the empty list, and it overrides Eval() to just return
$self too, so an empty list evaluates to itself.

Back to our cons function. Scheme implementations have a cons operation
that takes two arguments and creates a cons cell with its car referencing the
first argument, and its cdr referencing the second.

> (cons 10 (list 20 30))
(10 20 30)

Thus the car and cdr operations are the precise complement of cons: cons
constructs a cell, and car and cdr take the cell apart.

> (car (cons 10 (list 20 30)))
10
> (cdr (cons 10 (list 20 30)))
(20 30)

Provided the second argument to cons is a list, the result will also be a list, so
this implementation provides a cons function that requires its second argument
to be a list and builds a new list from it with its first argument prepended. It’s
implemented in the normal way, by subclassing PScm::Primitiveand giving the
new class, PScm::Primitive::Cons in this case, an apply() method. Here’s
that method.

84

107 sub _apply {
108 my ($self, $car, $cdr) = @_;
109

110 $self->_check_type($cdr, ’PScm::Expr::List’);
111 return PScm::Expr::List->Cons($car, $cdr);
112 }

It can be seen that all it does is to check that it’s second argument is a list,
then call the PScm::Expr::List’s Cons method.

9.5 Summary

In interpreter 0.0.5 five related operations for creating and manipulating list
structures have been added. We’ll put those to good use in the next version of
the interpreter when we look at macros. In the process of implementing one of
those operations, cons, the basic list implementation was changed to be closer
to a “standard” scheme implementation.

Just for the sake of completeness Here’s the changes to our top-level PScm::
ReadEvalPrint() method, where we add the new bindings for these functions
in the initial environment.

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(
38 let => new PScm::SpecialForm::Let(),
39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 lambda => new PScm::SpecialForm::Lambda(),
43 �
�� !� ��% ��������
�
�
�����
��()$
44 ��� !� ��% ��������
�
�
����4��()$
45 ��� !� ��% ��������
�
�
����4��()$
46 ��� !� ��% ��������
�
�
����4��()$
47 letrec => new PScm::SpecialForm::LetRec(),
48 ’let*’ => new PScm::SpecialForm::LetStar(),
49 6��� !� ��% ����������
��&����7���()$
50)
51);
52 $result->Print($outfh);
53 }
54 }

9.6 Tests

These tests exercise our new list functions.

85

01 use strict;
02 use warnings;
03 use Test::More tests => 24;
04 use FileHandle;
05

06 BEGIN { use_ok(’PScm’) }
07

08 sub evaluate {
09 my ($expression) = @_;
10

11 my $fh = new FileHandle("> junk");
12 $fh->print($expression);
13 $fh = new FileHandle(’< junk’);
14 my $outfh = new FileHandle("> junk2");
15 ReadEvalPrint($fh, $outfh);
16 $fh = 0;
17 $outfh = 0;
18 my $res = ‘cat junk2‘;
19 chomp $res;
20 unlink(’junk’);
21 unlink(’junk2’);
22

23 # warn "# [$res]\n";
24 return $res;
25 }
26

27 ok(evaluate(’1’) eq ’1’, ’numbers’);
28 ok(evaluate(’+1’) eq ’1’, ’positive numbers’);
29 ok(evaluate(’-1’) eq ’-1’, ’negative numbers’);
30

31 ok(evaluate(’"hello"’) eq ’"hello"’, ’strings’);
32

33 ok(evaluate(’(* 2 3 4)’) eq ’24’, ’multiplication’);
34 ok(evaluate(’(- 10 2 3)’) eq ’5’, ’subtraction’);
35 ok(evaluate(’(- 10)’) eq ’-10’, ’negation’);
36

37 ok(evaluate(’(let ((x 2)) x)’) eq ’2’, ’simple let’);
38

39 ok(evaluate(’(if 0 10 20)’) eq ’20’, ’simple conditional’);
40

41 ok(evaluate(<<EOF) eq ’20’, ’conditional evaluation’);
42 (let ((a 00)
43 (b 10)
44 (c 20))
45 (if a b c))

listing 15: t/PScm.t

86

46 EOF
47

48 ok(evaluate(<<EOF) eq ’16’, ’lambda’);
49 (let ((square
50 (lambda (x) (* x x))))
51 (square 4))
52 EOF
53

54 ok(evaluate(<<EOF) eq ’12’, ’closure’);
55 (let ((times3
56 (let ((n 3))
57 (lambda (x) (* n x)))))
58 (times3 4))
59 EOF
60

61 ok(evaluate(<<EOF) eq ’15’, ’higher order functions’);
62 (let ((times3
63 (let ((makemultiplier
64 (lambda (n)
65 (lambda (x) (* n x)))))
66 (makemultiplier 3))))
67 (times3 5))
68 EOF
69

70 ok(!defined(eval { evaluate(<<EOF) }), ’let does not support recursion’);
71 (let ((factorial
72 (lambda (n)
73 (if n (* n (factorial (- n 1)))
74 1))))
75 (factorial 4))
76 EOF
77

78 ok($@ eq "no binding for factorial in PScm::Env\n", ’let does not support recursion [2]’);
79

80 ok(evaluate(<<EOF) eq "24", ’letrec and recursion’);
81 (letrec ((factorial
82 (lambda (n)
83 (if n (* n (factorial (- n 1)))
84 1))))
85 (factorial 4))
86 EOF
87

88 ok(evaluate(<<EOF) eq ’1’, ’let binds in parallel’);
89 (let ((a 1)

listing 15: t/PScm.t (Cont.)

87

90 (b 2))
91 (let ((a b)
92 (b a))
93 b))
94 EOF
95

96 ok(evaluate(<<EOF) eq ’2’, ’let* binds sequentially’);
97 (let ((a 1)
98 (b 2))
99 (let* ((a b)
100 (b a))
101 b))
102 EOF
103

104 ok(evaluate(<<EOF) eq ’(1 2 3)’, ’list primitive’);
105 (let ((a 1)
106 (b 2)
107 (c 3))
108 (list a b c))
109 EOF
110

111 ok(evaluate(<<EOF) eq ’1’, ’car primitive’);
112 (let ((a (list 1 2 3)))
113 (car a))
114 EOF
115

116 ok(evaluate(<<EOF) eq ’(2 3)’, ’cdr primitive’);
117 (let ((a (list 1 2 3)))
118 (cdr a))
119 EOF
120

121 ok(evaluate(<<EOF) eq ’(1 2 3)’, ’cons primitive’);
122 (cons 1 (list 2 3))
123 EOF
124

125 ok(evaluate(’(quote (list 1 2 3))’) eq ’(list 1 2 3)’, ’quote special form’);
126

127 # vim: ft=perl

listing 15: t/PScm.t (Cont.)

88

10 Interpreter Version 0.0.6—Macros

What is a macro? People familiar with the C programming language will prob-
ably think of macros as being purely a textual substitution mechanism done in
some sort of preprocessing step before the compiler proper gets to look at the
code. However that’s a somewhat limited perspective, perfectly adequate for
languages like C but constraining from our point of view. A better definition
of a macro is any sort of substitution that can happen before the final code is
executed.

The real importance of macros is their potential to allow syntactic extensions
to their language. In the case of PScheme, each special form is a syntactic
extension to the language, and so our working definition of a PScheme macro
could be something that allows us to define our own special forms within the
language itself. Here’s an example. Suppose the language lacked the let special
form. as was mentioned in a previous section, let shares a good deal in common
with lambda. In fact any let expression, say

(let ((a 10)
(b 20))

(- b a))

has an equivalent lambda expression, in this case

((lambda (a b) (- b a)) 10 20)

The body of the let is the same as the body of the lambda, and the bindings
of the let are split between the formal and actual arguments to the lambda
expression. In general any let expression:

(let ((〈var1〉 〈val1〉)
(〈var2〉 〈val2〉)
...)

〈expression〉)
has an equivalent lambda form:

((lambda (〈var1〉 〈var2〉 ...)
〈expression〉)

〈val1〉 〈val2〉 ...)

Of course internally let doesn’t make use of closures, but in the case of the
lambda equivalent to let, the lambda expression is evaluated immediately in
the same environment as it was defined, so closure is immaterial. All that our
purported let macro need do then, is to rewrite its arguments into an equivalent
lambda form and have that executed in its place. We developed all of the tools
we will need to do that in the 0.0.5 interpreter in a previous section. All we
need to do now is to think of a way to allow us to define macros, how hard
can it be? Macros will obviously share a great deal in common with functions.
They will have a separate declaration and use. They will also take arguments,
and have a body that is evaluated in some way. In fact the first part of their
implementation, that of parsing their declaration will be virtually identical to
that of lambda expressions, except that the lambda keyword is already taken.
Tke keyword “macro” can be used in its place.

89

10.1 �����

As before then, we subclass PScm::SpecialForm and give the new class an
Apply() method. The new class is called PScm::SpecialForm::Macro after
its eponymous symbol. Here’s the Apply() method for PScm::SpecialForm::
Macro.

93 package PScm::SpecialForm::Macro;
94

95 use base qw(PScm::SpecialForm);
96 use PScm::Closure;
97

98 sub Apply {
99 my ($self, $form, $env) = @_;
100 my ($args, $body) = $form->value;
101 return PScm::Closure::Macro->new($args, $body, $env);
102 }
103

104 #################################

It’s virtually identical to PScm::SpecialForm::Lambda except that it creates a
new PScm::Closure::Macro (not to be confused with this PScm::SpecialForm::
Macro class) instead of a PScm::Closure::Function. So we’ve left the prob-
lem of how to make a macro actually work until last, in the PScm::Closure::
Macro’s Apply() method.

10.2 Evaluating Macros

Consider how PScm::Closure::Function works. It evaluates its arguments in
the passed-in environment then gives the results to its parent apply() method
which extends the environment that was captured when the closure was creat-
ed with bindings of those actual arguments to its formal arguments. Then it
evaluates its body in that extended environment and returns the result. Here
again is PScm::Closure::Function’s Apply() method:

33 sub Apply {
34 my ($self, $form, $env) = @_;
35

36 my @evaluated_args = map { $_->Eval($env) } $form->value;
37 return $self->_apply(@evaluated_args);
38 }

And here’s the private apply() method in the base PScm::Closure class:

21 sub _apply {
22 my ($self, @args) = @_;
23

24 my $extended_env = $self->env->ExtendUnevaluated([$self->args], [@args]);
25 return $self->body->Eval($extended_env);
26 }

90

Any implementation of macros will share something in common with this imple-
mentation of functions, but there will be differences. Obviously a macro should
be passed its arguments unevaluated. That way it can perform whatever (list)
operations it likes on that structure. Then when it returns a new form, it is
that form that gets evaluated. It’s as simple as that, and here’s the Apply()
method for PScm::Closure::Macro:

41 package PScm::Closure::Macro;
42

43 use base qw(PScm::Closure);
44

45 sub Apply {
46 my ($self, $form, $env) = @_;
47

48 my @unevaluated_args = $form->value;
49 my $new_form = $self->_apply(@unevaluated_args);
50 return $new_form->Eval($env);
51 }
52

53 1;

Compare that with the Apply()method from PScm::Closure::Functionabove.
Functions evaluate their arguments, then evaluate their body with those

arguments bound. Macros don’t evaluate their arguments, they evaluate their
body with their unevaluated arguments bound, then re-evaluate the result.

Just for fun, let’s take a look at how we might attack the problem which
introduced this section: implementing let in terms of lambda.

(let* ((mylet
(macro (bindings body)

(let* ((names (cars bindings))
(values (cadrs bindings)))

(cons (list (quote lambda) names body) values)))))
(mylet ((a 1)

(b 2))
(list a b)))

This code uses let* (remember we’re pretending that we don’t have let) to
bind mylet to a macro definition, then it uses mylet in the body of the let*.
It makes use of some supporting functions that we’ll define presently, but first
let’s try to get a feel for what it is doing. As stated above, the symbol macro
introduces a macro definition. The arguments to mylet will be the same as those
to let, namely a list of bindings and a body to execute with those bindings in
place. It has to separate the bindings (symbol-value pairs) into two lists, one of
the symbols and one of the values. It uses a function cars to extract the car of
each binding (the symbol) into the list called names.

Here’s the definition of cars:

(letrec (...
(cars

91

(lambda (lst)
(if lst
(cons (car (car lst))

(cars (cdr lst)))
(quote ()))))

...)
...)

It’s a recursive function, hence the need for letrec to bind it. Passed a list of
zero or more bindings, it collects the car of each into a new list. It does this
by checking the argument list. If the list is empty it returns the empty list,
otherwise it conses the car of the first component of the list with the result of
calling itself on the rest of the list.

cadrs16 is very similar. It walks the list collecting the second component of
each sublist (the values of the bindings).

(letrec (...
(cadrs
(lambda (lst)
(if lst
(cons (car (cdr (car lst)))

(cadrs (cdr lst)))
(quote ()))))

...)
...)

Here’s the whole thing.

(let* ((mylet
(letrec ((cars

(lambda (lst)
(if lst
(cons (car (car lst))

(cars (cdr lst)))
(quote ()))))

(cadrs
(lambda (lst)
(if lst
(cons (car (cdr (car lst)))

(cadrs (cdr lst)))
(quote ())))))

(syntax (bindings body)
(let ((names (cars bindings))

(values (cadrs bindings)))
(cons (list (quote lambda) names body) values))))))

(mylet ((a 1)
(b 2))

(list a b)))

16The term cadr is a contraction of “car of the cdr” e.g. (cadr x) == (car (cdr x)). this
sort of contraction is often seen in scheme code, sometimes nested as much as four or five
levels deep, i.e. cadadr.

92

After collecting the names into one list and the values into another, the mylet
macro builds:

((lambda (<names>) (<body>)) <values>)

Where ¡names¿, ¡body¿ and ¡values¿ are expanded. Note the use of list to
construct lists of lists, contrasted with the use of cons to prepend the body to
the argument list, making it the first form. That means we get

((lambda (a b) (list a b)) 1 2)

instead of the incorrect

((lambda (a b) (list a b)) (1 2)).

Another point to note is that the constructed mylet macro is a true closure,
since it has captured the definitions of the cars and cadrs and executes in an
outer environment (the let*) where those functions are no longer defined.

10.3 Summary

The macro substitution system demonstrated here is pretty crude, after all it
requires the programmer to directly manipulate low-level list structures, rather
than just supplying an “example” of how the transformation is to be performed.
In fact the topic of macro expansion as provided by a full Scheme implementation
is deserving of a book to itself. Apart from the templating ability, there are also
issues of avoiding variable collision (so-called hygenic macros) so that full scheme
macros are much closer to the idea of C++’s inline functions than they are to
C’s #define.

Here’s the additions to ReadEvalPrint() which bind our new macro feature
to the initial environment:

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(
38 let => new PScm::SpecialForm::Let(),
39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 lambda => new PScm::SpecialForm::Lambda(),
43 list => new PScm::Primitive::List(),
44 car => new PScm::Primitive::Car(),
45 cdr => new PScm::Primitive::Cdr(),
46 cons => new PScm::Primitive::Cons(),
47 letrec => new PScm::SpecialForm::LetRec(),
48 ’let*’ => new PScm::SpecialForm::LetStar(),

93

49 ���� !� ��% ����������
��&����)���()$
50 quote => new PScm::SpecialForm::Quote(),
51)
52);
53 $result->Print($outfh);
54 }
55 }

94

11 Interpreter Version 0.0.7—Side Effects

The question arises as to why the implementation of the define special form
has beed deferred for so long, when it would have made so much of the previ-
ous discussion easier, particularily the Scheme examples. Well there are good
reasons. Consider what the language so far has got.

11.1 The Beauty of Functional Languages

So far, the language is fairly complete. It is however a purely functional lan-
guage, in the sense that its expressions are like mathematical functions: the
value of a variable is fixed for the duration of the expression. There is no se-
quential execution (though there is recursion) and most importantly there are
no side effects. That means that one part of a program cannot affect the exe-
cution of another part that it does not contain, except by returning values that
get passed in to that other part.

While this might seem to be a limitation of the language, it does in fact have
some very important advantages. Essentially it makes large-scale expressions in
the language very simple to analyse: since one part of an expression cannot affect
another structurally independant part except through its inputs (arguments,)
different components of a program (including the current environment) could
be fed to separate processes, perhaps even separate machines on a network.

To make this clear, suppose we had a networked version of the language.
There would be a pool of processes available to do work, and each process
could delegate sub-parts of their work to other processes. A simple rule might
be that for parallel binding, e.g. let bindings and the arguments to closures
and primitive functions, the evaluation of the arguments could be performed by
“outsourcing” the evaluation of each subexpression to a different process. For
example consider the following fragment:

...
(let ((a (func1 x))

(b (func2 y))
(c (func3 z)))

(func4 (func5 a) (func6 b) (func7 c)))
...

The let could elect to send the subexpression (func1 x) (plus the environ-
ment where func1 and x have a value) to one process, and the subexpression
(func2 y) to another. While those two expressions are being evaluated the let
could get on with evaluating (func3 z) itself. Then when it had finished that
evaluation it would collect the result of the other two evaluations and proceed
to evaluate its body. Similarily the evaluation of the body (the call to func4)
could outsource the evaluation of the arguments (func5 a) and (func6 b) and
get on with evaluating (func7 c), collecting the other results when it finished,
and then proceeding to evaluate the func4 call with those evaluated arguments.
It probably shouldn’t outsource something a simple as variable lookup.

The implementation of this networked programming language is left to you.
Some sort of central ticketing server would be needed, with a queue where
requestors could post their requests in exchange for a ticket, and a pool where

95

clients could post their results so that they need not wait for the requestor to
get back to them. . . quite an interesting project.

Beyond this point that kind of application becomes nearly impossible be-
cause we are about to introduce side effects, in particular variable assignment
and, to make that useful, sequences of expressions. That’s just the proper name
for something we’re all very familiar with—one statement following another.

In fact, the primary difference between a statement and an expression is that
a statement is executed primarily for its side effects. There are only a couple of
different side effects that we need to consider. The first is variable assignment,
that is to say the changing of the existing value of a variable binding. The second
is global definition, the creation of new entries in the initial environment.

11.2 Variable Assignment

This version of the interpreter will only add variable assignment (and sequences,)
global definition is left for later. Variable assignment should be a special form,
so that the variable being assigned to does not get evaluated. In Scheme, and
PScheme, the symbol bound to the variable assignment special form is set!,
the exclaimation point signifying that this operation has a side effect that might
upset an otherwise purely functional program17. The syntax is simple, but there
is a gotcha:

(set! a 10)
����� � �
��
�� 	� �
� ���������

This may sound unnecessarily picky, but for variable assignment to work, there
must already be a binding in place that the assignment can affect. This works:

> (let ((a 5))
> (let (dummy (set! a 10))
> a))
10

This is a bit contrived, we use a dummy variable to allow the set! expression
to be evaluated before the body of the inner let returns the new value of a.
However it should be clear from the example that the set! did take effect.

So how do we go about implementing set!? Well as luck would have it,
we already have a method for changing existing bindings in an environment,
we have the Assign() method that was developed for the letrec special form
in a previous incarnation. It has precisely the right semantics too (what a co-
incidence!) It searches through the chain of environment frames until it finds an
appropriate binding, assigning the value if it does and die()-ing if it doesn’t.
Here it is again:

59 sub Assign {
60 my ($self, $symbol, $value) = @_;
61

62 if (defined(my $ref = $self->_lookup_ref($symbol))) {
63 $$ref = $value;

17the exclaimation point is used to suffix all such side-effecting operations, with the excep-
tion of define, for some reason

96

64 } else {
65 die "no binding for @{[$symbol->value]}",
66 " in @{[ref($self)]}\n";
67 }
68 }

So all we have to do is wire it up. The process of creating new special forms
should be familiar by now. Firstly we subclass PScm::SpecialForm and give
it an Apply() method. The new class in this case is PScm::SpecialForm::
Set. Its Apply() method as usual takes a form and the current environment as
arguments. In this case the form should contain a symbol and a value expression.
This Apply() will evaluate the expression and call the environment’s Assign()
method with the symbol and resulting value as arguments:

115 package PScm::SpecialForm::Set;
116

117 use base qw(PScm::SpecialForm);
118

119 sub Apply {
120 my ($self, $form, $env) = @_;
121 my ($symbol, $expr) = $form->value;
122 $env->Assign($symbol, $expr->Eval($env));
123 }
124

125 #################################

And that’s all there is to it, apart from adding a PScm::SpecialForm::Set
object to the initial environment, bound to the symbol set!.

11.3 Sequences

Sequences are a fairly trivial addition to the language. Rather than a single
expression, a sequence contains one or more expressions. Each expression is
evaluated in order, and the value of the last expression is the value of the se-
quence. This is such a common thing in many other languages (such as Perl)
that it goes without notice, but thinking about it, sequences only become rele-
vant and useful in the presence of side effects. Since only the value of the last
expression is returned, preceding expressions can only affect the computation if
they have side effects.

The keyword introducing a sequence in PScm is begin. begin takes a list
of one or more expressions, evaluates each one, and returns the value of the
last expression. It functions something like a block in Perl, except that a Perl
block also encloses a variable scope like let does, but begin does not imply any
scope.

(begin <expression1> <expression2> ...)

begin could, in fact, be implemented as a function, provided that functions
are guaranteed to evaluate their arguments in left-to-right order, as this imple-
mentation does. However it is safer not to make that assumption (remember

97

the networked language where evaluation was envisaged in parallel,) so begin
is better implemented as a special form which can guarantee that left to right
behaviour.

As might be imagined the code is quite trivial: evaluate each component of
the form and return the last value. We pick as an initial value the empty list, so
that if the body of the begin is empty, that is the result. As usual we subclass
PScm::SpecialForm, in this case to PScm::SpecialForm::Begin, and give the
new class an Apply() method:

126 package PScm::SpecialForm::Begin;
127

128 use base qw(PScm::SpecialForm);
129

130 sub Apply {
131 my ($self, $form, $env) = @_;
132 my (@expressions) = $form->value;
133

134 my $ret = new PScm::Expr::List();
135

136 while (@expressions) {
137 $ret = shift(@expressions)->Eval($env);
138 }
139

140 return $ret;
141 }
142

143 1;

On line 132 it extracts the expressions from the argument $form. Then on
line 134 it initialises the return value $ret to an initial value. On lines 136-
138 it loops over each expression, evaluating it in the current environment, and
assigning the result to $ret, replacing the previous value. Lastly on line 140 it
returns the final value.

11.4 Summary

In this section we’ve seen variable assignment added to the language, but also
taken some time to consider some drawbacks of that feature. We’ve also looked
at how sequences become useful in the presence of variable binding.

As usual we need to add our new forms to the interpreter by binding them in
the initial environment. Here’s ReadEvalPrint() with the additional bindings.

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 while (defined(my $expr = $reader->Read)) {
36 my $result = $expr->Eval(
37 new PScm::Env(

98

38 let => new PScm::SpecialForm::Let(),
39 ’*’ => new PScm::Primitive::Multiply(),
40 ’-’ => new PScm::Primitive::Subtract(),
41 if => new PScm::SpecialForm::If(),
42 lambda => new PScm::SpecialForm::Lambda(),
43 list => new PScm::Primitive::List(),
44 car => new PScm::Primitive::Car(),
45 cdr => new PScm::Primitive::Cdr(),
46 cons => new PScm::Primitive::Cons(),
47 letrec => new PScm::SpecialForm::LetRec(),
48 ’let*’ => new PScm::SpecialForm::LetStar(),
49 macro => new PScm::SpecialForm::Macro(),
50 quote => new PScm::SpecialForm::Quote(),
51 '���8' !� ��% ����������
��&�������()$
52 ���
� !� ��% ����������
��&����9��
�()$
53)
54);
55 $result->Print($outfh);
56 }
57 }

99

12 Interpreter Version 0.0.8—��	
��

And so to define. define is another type of side effect. It differs from set!
in that it is an error if the symbol already has a binding, and it differs also in
that the binding is always installed in the current environment.

12.1 Environment Changes

Code that manipulates environments is best defined in the environment package
PScm::Env, and that’s what we do. The additional method in PScm::Env is
called, unsurprisingly, Define() and it’s quite simple.

98 sub Define {
99 my ($self, $symbol, $value) = @_;
100

101 if (exists($self->{bindings}{ $symbol->value })) {
102 die "attempt to redefine @{[$symbol->value]}\n";
103 } else {
104 $self->{bindings}{ $symbol->value } = $value;
105 return $symbol;
106 }
107 }
It takes a symbol and a value (already evaluated) as arguments. On line 101 it
checks that a binding for the symbol does not exist in the current frame. If it
does it dies with an informative message. Otherwise, on line 104 it directly adds
the binding from the symbol value (i.e. string) to the value, and on line 105 it
returns the symbol being defined, to give the print system something sensible
to print.

12.2 The ����� Special Form

Now we need to follow the usual procedure to add another special form to the
language: we subclass PScm::SpecialForm and give our new class an Apply()
method. In this case the new class is called PScm::SpecialForm::Define.

144 package PScm::SpecialForm::Define;
145

146 use base qw(PScm::SpecialForm);
147

148 sub Apply {
149 my ($self, $form, $env) = @_;
150 my ($symbol, $expr) = $form->value;
151 $env->Define($symbol, $expr->Eval($env));
152 }
153

154 1;

All it does is on line 150 it extracts the symbol and the expression from the
argument $form then on line 151 it calls the Define() environment method
described above with the symbol and evaluated expression (value) as argument.

100

12.3 Persistant Environments

There is one more change to make. In order for define to be effective from one
expression to another, it no longer makes sense to create a fresh environment for
each expression to be evaluated in, as ReadEvalPrint has done so far, because
that would eradicate the effect of any define performed by a prior expression.
The solution is of course trivial, we create the initial environment outside of the
read-eval-print loop itself, and pass it to each top-level Eval():

30 sub ReadEvalPrint {
31 my ($infh, $outfh) = @_;
32

33 $outfh ||= *STDOUT;
34 my $reader = new PScm::Read($infh);
35 my �
�
�
��/��� = new PScm::Env(
36 let => new PScm::SpecialForm::Let(),
37 ’*’ => new PScm::Primitive::Multiply(),
38 ’-’ => new PScm::Primitive::Subtract(),
39 if => new PScm::SpecialForm::If(),
40 lambda => new PScm::SpecialForm::Lambda(),
41 list => new PScm::Primitive::List(),
42 car => new PScm::Primitive::Car(),
43 cdr => new PScm::Primitive::Cdr(),
44 cons => new PScm::Primitive::Cons(),
45 letrec => new PScm::SpecialForm::LetRec(),
46 ’let*’ => new PScm::SpecialForm::LetStar(),
47 macro => new PScm::SpecialForm::Macro(),
48 quote => new PScm::SpecialForm::Quote(),
49 ’set!’ => new PScm::SpecialForm::Set(),
50 begin => new PScm::SpecialForm::Begin(),
51 ��	
�� !� ��% ����������
��&����:�	
��()$
52);
53

54 %3
�� ���	
������ ����� ! ���������2����� {
55 �� ������� ! �������������
�
�
��/����

56 $result->Print($outfh);
57 }
58 }

Now we can actually write some of the earliest examples from this chapter in
the language at hand.

> (define factorial
> (lambda (x)
> (if x
> (* x (factorial (- x 1)))
> 1)))
factorial
> (factorial 4)
24

101

The factorial function was chosen to demonstrate that functions created by
define can call themselves recursively. After all, the environment they are
executed in must, by virtue of how define operates, contain a binding for the
function itself.

define can be used for other things too. Because of the simple semantics of
the PScheme language, define is perfectly suited for creating aliases to existing
functions. For instance if a programmer doesn’t like the rather obscure names
for the functions car and cdr, they can provide aliases:

> (define first car)
first
> (define rest cdr)
rest

These are completely equivalent to the original functions except in name. The
primitive definitions are bound to symbols in the initial environment exactly as
they are (still) bound to their original symbols.

102

13 Interpreter Version 0.0.9—Classes and Ob-

jects

Almost every modern programming language has an object-oriented extension
or variant available. Some languages, such as SmallTalk and Ruby are ”pure”
object-oriented languages in that everything in the language is an object18. Oth-
ers, such as Perl, add object-oriented features to what is essentially a procedural
core.

Practically every implementation of an object-oriented language or language
extension has its peculiarities. There are a lot of trade-offs and choices to be
made. Most of these differences come down to issues of visibility of components
of the objects to other parts of the program being written in the language:
Should the value fields of an object be visible outside of that object? Should
an object be able to see the fields in an object it inherits from? Should certain
methods of an object be hidden from the outside world? from its descendants?

The implementation discussed here makes choices in order to leverage exist-
ing code. Those choices result in a particular object-oriented “style”.

13.1 Features of this implementation

• fields are only visible to methods

• fields behave like normal variables

• fields are not visible to methods in descendant classes

classes objects methods private protected public messages fields inheritance
single multiple

PScm::SpecialForm::Class PScm::SpecialForm::DummyMethod PScm::Method
PScm::BuiltinMethod PScm::Env::Object PScm::Env::Super PScm::Class PScm::Class::Root
PScm::Closure::Method

18If you don’t know SmallTalk, you might be surprised at how far that statement goes.
Not only are the simple numeric and string data types objects, but arrays, hashes (called
Dictionaries), booleans, code blocks and even classes are objects in SmallTalk

103

14 Interpreter Version 0.0.10—Continuations

104

15 Summary

In this chapter we’ve watched the evolution of a programming language from
humble beginnings to a powerful and complete implementation. Starting from
a global environment model with basic arithmetic and conditional evaluation,
we introduced an environment passing model which made possible the imple-
mentation of local variables and much else besides. We also reasoned that trees
are a much better structure for combining environment frames than stacks are,
especially in the next section where we introduced function definition and clo-
sure. We then went on to introduce recursive functions, and showed that a
different kind of binding is necessary to get recursive functions to work. Moving
on, we introduced another type of binding which is performed sequentially. In
the next section we looked at adding list processing to the language, allowing it
to manipulate directly the structures that the language is composed of. Then
in posession of that new set of functions we added a macro facility that allowed
the program to rewrite parts of its own structure.

Before adding other desirable features to the language we paused to describe
the benefits of a language without such features, and noted that such a pure
functional language was amenable to parallel evaluation. Brushing aside those
concerns we lastly moved on to add side effects, (both definition and assignment)
and sequences.

That’s all for now.

105

